M20580 L.A. and D.E.
 Worksheet 13

1. 2. Let \mathcal{B} be the basis $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ and \mathcal{C} be the basis $\left\{\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$. Find the change of basis matrix $P_{C \leftarrow B}$.
(a) $\left[\begin{array}{cc}-1 & -\frac{1}{2} \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}4 & 5 \\ -2 & -2\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$
(d) $\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right]$
(e) none of these

Solution: $\left[\begin{array}{ll}2 & 3 \\ 0 & 1\end{array}\right]^{-1}\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$ gives us the answer a.
2. Let M be the matrix

$$
M=\left[\begin{array}{cccc}
-2 & 1 & -2 & 2 \\
17 & 32 & 20 & -18 \\
-16 & -24 & -15 & 16 \\
-7 & 2 & -3 & 6
\end{array}\right]
$$

You are told that M has eigenvector

What is the corresponding eigenvalue?
(a) 2
(b) 4
(c) 5
(d) 8
(e) none of these

Solution: We only need to compute the first entry which is

$$
-2 \cdot 2+1 \cdot 2+(-2) \cdot 0+2 \cdot 5=8=4 \cdot 2
$$

Thus, the answer is b.
3. Let $\mathcal{M}_{6 \times 8}$ be the vector space of all 6 by 8 matrices, under addition of matrices and scalar multiplication of matrices. What is the dimension of $\mathcal{M}_{6 \times 8}$?
(a) 6
(b) 8
(c) 14
(d) 48
(e) none of these

Solution: The answer is d.
4. Let $T: \mathbb{R}^{18} \rightarrow \mathbb{R}^{14}$ be onto. What is the dimension of the kernel of T ?
(a) 4
(b) 14
(c) 0
(d) 32
(e) not enough information to tell

Solution: By rank-nullity theorem, $18-14=4$. Thus, the answer is a.
5. Which of the following is a subspace of the vector space of functions on the real numbers?
(a) the set of f with $f(0)=2$
(b) the set of solutions to the differential equation $y^{\prime \prime}-\sin (t) y=0$
(c) the set of polynomials of the form $a t^{3}+b t$ with $a \neq 0$
(d) the set of solutions to the differential equation $y^{\prime \prime}=5$
(e) none of these

Solution: The answer is b. For a, c and d, the zero function is not in the set so that the set cannot form a vector space of functions.
6. What is the dimension of the null space of $A=\left[\begin{array}{cccc}1 & 2 & 0 & 5 \\ -3 & -5 & -1 & -12 \\ 2 & 3 & 1 & 8 \\ 3 & 8 & -2 & 13\end{array}\right]$?
(a) 0
(b) 1
(c) 2
(d) 3
(e) none of these

Solution: Turn matrix A into REF

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & 5 \\
0 & 1 & -1 & 3 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

We will find that there is a zero row at the botom of the matrix. Thus, the dimension of the null space is 1 .
7. Suppose a 7×7 matrix A has determinant 17 . Which of the following must be TRUE?
(a) the rank of A is 7
(b) $\operatorname{det}\left(A^{T}\right)=\frac{1}{17}$
(c) $\operatorname{det}\left(A^{-1}\right)=-17$
(d) $\operatorname{det}\left(A^{T} A\right)=49$
(e) none of these

Solution: $\operatorname{det}(A) \neq 0$ which means the matrix is of full rank. Hence, a is correct.
8. Consider the initial value problem $y^{\prime \prime}-4 y^{\prime}-5 y=0, y(0)=1, y^{\prime}(0)=0$. Which of the following describes the behavior of the solution at $t \rightarrow+\infty$:
(a) $\lim _{t \rightarrow+\infty} y(t)=+\infty$
(b) $\lim _{t \rightarrow+\infty} y(t)=-\infty$
(c) $\lim _{t \rightarrow+\infty} y(t)=0$
(d) $y(t)$ is a decaying oscillation
(e) $y(t)$ is a growing oscillation

Solution: Using characteristic equation method, the solution to the ODE is

$$
y=e^{1 / 6 t}+e^{5 / 6 t}
$$

y goes to ∞ as t goes to infty.
9. On which interval is the solution of the initial value problem $(\sin t) y^{\prime \prime}+y=1, y(1)=$ $1, y^{\prime}(1)=2$ certain to exist?
(a) $0<t<2 \pi$
(b) $0<t<\pi$
(c) $\pi<t<2 \pi$
(d) $-\infty<t<+\infty$
(e) cannot guarantee existence on any interval

Solution: We need to avoid t such that $\sin t=0$ but also need to include $t=1$, thus, b.
10. Consider the autonomous equation $y^{\prime}=y(y-1)(y-2)(y-3)$ with initial condition $y(0)=2.99$. Without solving the equation explicitly, find the limit $\lim _{t \rightarrow+\infty} y(t)$.
(a) 0
(b) 1
(c) 2
(d) 3
(e) ∞

Solution: c.

