Math 20580 Tutorial - Worksheet 2

1. Determine whether the vector \mathbf{w} can be written as a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}$ and \mathbf{v}_{3}. If yes, find scalars a_{1}, a_{2}, a_{3} such that $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=\mathbf{w}$.
$\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -3 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}5 \\ -6 \\ 8\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{c}2 \\ -5 \\ 6\end{array}\right]$.
Solution: To solve $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=\mathbf{w}$, row reduce to the corresponding augmented matrix

$$
\left[\begin{array}{ccc|c}
1 & 0 & 5 & 2 \\
-3 & 1 & -6 & -5 \\
0 & 1 & 8 & 6
\end{array}\right] \xrightarrow{R_{2}+3 R_{1}}\left[\begin{array}{ccc|c}
1 & 0 & 5 & 2 \\
0 & 1 & 9 & 1 \\
0 & 1 & 8 & 6
\end{array}\right] \xrightarrow{R_{3}-R_{2}}\left[\begin{array}{ccc|c}
1 & 0 & 5 & 2 \\
0 & 1 & 9 & 1 \\
0 & 0 & -1 & 5
\end{array}\right]
$$

By the third row, $a_{3}=-5$. Similarly, we obtain $a_{2}+9 a_{3}=1$ and $a_{1}+5 a_{3}=2$. Thus $\left(a_{1}, a_{2}, a_{3}\right)=(27,46,-5)$.
2. Find the inverses of the following matrices if it exists

$$
(a)=\left[\begin{array}{ll}
2 & 3 \\
7 & 4
\end{array}\right], \quad(b)=\left[\begin{array}{cc}
4 & -6 \\
6 & -9
\end{array}\right] .
$$

Solution: We recall that for a 2×2 matrix

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

if $a d-b c \neq 0$, then the inverse of A is given by

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$, then A does not have an inverse (not invertible).
(a) $2 \times 4-7 \times 3=-13 \neq 0$, so the inverse is

$$
\frac{1}{-13}\left[\begin{array}{cc}
4 & -3 \\
-7 & 2
\end{array}\right] .
$$

(b) $4 \times(-9)-6 \times(-6)=0$, so the matrix is not invertible.
3. (a) Let

$$
A=\left[\begin{array}{cc}
3 & -9 \\
-1 & 3
\end{array}\right] .
$$

Construct a 2×2 matrix B such that $A B$ is the zero matrix. Use two different nonzero columns for B.

Solution: We note that if we write $B=\left[\begin{array}{ll}\mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right]$, where $\mathbf{b}_{1}, \mathbf{b}_{2}$ are two column vectors in \mathbb{R}^{2}, then $A B=\left[\begin{array}{ll}A \mathbf{b}_{1} & A \mathbf{b}_{2}\end{array}\right]$ (See, e.g., textbook Theorem 3.3 and its proof). Hence, $A B$ is a zero matrix if and only if $A \mathbf{b}_{1}=A \mathbf{b}_{2}=\mathbf{0}$, so we need to find two nonzero solutions to the system $A \mathbf{x}=\mathbf{0}$. Write

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

The RREF of A is

$$
\left[\begin{array}{cc}
1 & -3 \\
0 & 0
\end{array}\right] .
$$

So we get $x_{1}=3 x_{2}$ and any pair of x_{1}, x_{2} satisfying this equation works. For example, We can choose $x_{1}=3, x_{2}=1$ or $x_{1}=-3, x_{2}=-1$, which gives
$\mathbf{b}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}-3 \\ -1\end{array}\right]$,
so one choice for a matrix B is

$$
B=\left[\begin{array}{ll}
3 & -3 \\
1 & -1
\end{array}\right]
$$

(b) Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], \quad$ and $C=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$.

Find the conditions on a, b, c and d such that A commutes with both B and C, that is, $A B=B A$ and $A C=C A$.

Solution: We can work out to see that

$$
A B=\left[\begin{array}{cc}
0 & b \\
0 & d
\end{array}\right], \quad B A=\left[\begin{array}{ll}
0 & 0 \\
c & d
\end{array}\right]
$$

so by comparing entry-by entry, we see that $A B=B A$ if and only if $b=0=c$. Likewise, we have

$$
A C=\left[\begin{array}{cc}
a & -2 a+b \\
c & -2 c+d
\end{array}\right], \quad C A=\left[\begin{array}{cc}
a-2 c & b-2 d \\
c & d
\end{array}\right],
$$

so that $A C=C A$ if and only iff $a=a-2 c$ and $-2 a+b=b-2 d$ and $-2 c+d=d$. Solving these equations, we get $c=0$ and $a=d$.
4. (a) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be a linear transformation. If
$T(\mathbf{u})=\left[\begin{array}{l}1 \\ 2\end{array}\right], T(\mathbf{v})=\left[\begin{array}{l}3 \\ 1\end{array}\right], T(\mathbf{w})=\left[\begin{array}{l}4 \\ 2\end{array}\right]$,
$\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$. Find $T(\mathbf{x})$ where $\mathbf{x}=2 \mathbf{u}+3 \mathbf{v}+\mathbf{w}$.
Solution: We recall two properties of a linear transformation T : for any two vectors of appropriate size \mathbf{u}, \mathbf{u} and any scalar c, we have

$$
\begin{aligned}
& T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v}) \\
& T(c \mathbf{u})=c T(\mathbf{u})
\end{aligned}
$$

Now, we continually use these two properties to compute $T(\mathbf{x})$. We have

$$
T(\mathbf{x})=T(2 \mathbf{u}+3 \mathbf{v}+\mathbf{w})=2 T(\mathbf{u})+3 T(\mathbf{v})+T(\mathbf{u}) .
$$

So

$$
T(\mathbf{x})=\left[\begin{array}{c}
15 \\
9
\end{array}\right] .
$$

(b) Continuing part (a), if we know

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

find a matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^{3}$.

Solution: If we write
$\mathbf{x}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
for any vector in \mathbb{R}^{3}, we have

$$
\mathbf{x}=a \mathbf{u}+b \mathbf{v}+c \mathbf{w}
$$

So using the same argument as in (b), we have

$$
T(\mathbf{x})=\left[\begin{array}{l}
a+3 b+4 c \\
2 a+b+2 c
\end{array}\right]
$$

Thus

$$
A=\left[\begin{array}{lll}
1 & 3 & 4 \\
2 & 1 & 2
\end{array}\right]
$$

5. For each of the following linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, find the standard matrix for T, i.e., find a 2×2 matrix A such that $T \mathbf{x}=A \mathbf{x}$.
(a)

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{1}
\end{array}\right], \forall \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] \in \mathbb{R}^{2}
$$

(b)

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}-2 x_{2} \\
3 x_{2}
\end{array}\right], \forall \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right] \in \mathbb{R}^{2}
$$

Solution:

(a)

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(b)

$$
A=\left[\begin{array}{cc}
1 & -2 \\
0 & 3
\end{array}\right]
$$

