Math 20580 Tutorial Worksheet 3

1. In parts (a)-(e) determine whether the statement is true or false, and justify your answer.
(a) If a matrix is in reduced row echelon form, then it is also in row echelon form.
(b) A homogeneous linear system in $n \geq 1$ unknowns whose corresponding augmented matrix has a reduced row echelon form with r leading 1's has $n-r$ free variables.
(c) If a homogeneous linear system of $n \geq 1$ equations in n unknowns has a corresponding augmented matrix with a reduced row echelon form containing n leading 1 's, then the linear system has only the trivial solution.
(d) If the reduced row echelon form of the augmented matrix for a linear system has a row of zeros, then the system must have infinitely many solutions.
(e) If a consistent linear system has more unknowns than equations, then it must have infinitely many solutions.

Solution:

(a) True. If a matrix is in reduced row echelon form, then in particular it is in row echelon form.
(b) True. We have an augmented matrix with r pivot columns. Therefore, there are $n-r$ columns which are not pivots, hence $n-r$ free variables.
(c) True. There are n pivot columns and zero free variables. So, there is a unique solution which must be the trivial one.
(d) False. Consider the augmented matrix $\left[\begin{array}{ll|l}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$. This matrix is in reduced row echelon form, but it has just one solution, the trivial one.
(e) True. If there are n unknowns and m equations where $n>m$, then there will be at most m pivot columns and therefore at least $n-m>0$ free variables. So, there will be infinitely many solutions.
2. (graded)
(a) Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -4 \\ 0 & 2\end{array}\right]$. Compute $A^{T} A+6 B^{-1}$.

Solution:

$$
\begin{aligned}
A^{T} A+6 B^{-1} & =\left[\begin{array}{lll}
1 & 3 & 0 \\
2 & 4 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
0 & 1
\end{array}\right]+\frac{6}{2}\left[\begin{array}{ll}
2 & 4 \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ll}
10 & 14 \\
14 & 21
\end{array}\right]+\left[\begin{array}{cc}
6 & 12 \\
0 & 3
\end{array}\right] \\
& =\left[\begin{array}{ll}
16 & 26 \\
14 & 24
\end{array}\right]
\end{aligned}
$$

Correct A^{T} and B^{-1}, 1 pt . Correct matrix multiplication $A^{T} A$, 1 pt . Correct answer, 1 pt .
(b) If the matrix A, B are such that

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right], \quad A B=\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 5 & 2
\end{array}\right]
$$

then what is the matrix B ?

Solution:

$$
\begin{aligned}
B & =A^{-1} A B \\
& =\left[\begin{array}{cc}
-3 & 2 \\
2 & -1
\end{array}\right]\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 5 & 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Correct A^{-1}, 1 pt. Correct answer, 1 pt .
3. Use Guass-Jordan method to find the inverse of the given matrix:

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

$$
\text { Solution: }\left[\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
3 & 4 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{1}-R_{3}}\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & -1 \\
3 & 4 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{2}-3 R_{1}}
$$

$$
\left[\begin{array}{ccc|ccc}
1 & 1 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -3 & 1 & 3 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{1}-R_{2}}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 4 & -1 & -4 \\
0 & 1 & 0 & -3 & 1 & 3 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \xrightarrow{R_{3}-R_{2}}
$$

$$
\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & 4 & -1 & -4 \\
0 & 1 & 0 & -3 & 1 & 3 \\
0 & 0 & 1 & 3 & -1 & -2
\end{array}\right]
$$

$$
\Rightarrow A^{-1}=\left[\begin{array}{ccc}
4 & -1 & -4 \\
-3 & 1 & 3 \\
3 & -1 & -2
\end{array}\right]
$$

4. Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
(a) How many vectors are in the set $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$?

Solution: There are exactly 2 vectors in the set.
(b) How many vectors are in the set span $\left(\vec{v}_{1}, \vec{v}_{2}\right)$?

Solution: There are infinitely many. Just consider $\vec{v}_{1}, 2 \vec{v}_{1}, 3 \vec{v}_{1}, 4 \vec{v}_{1}, \ldots$ This is clearly an infinite set of vectors that lies in the given span.
(c) If $\vec{y} \in \operatorname{span}\left(\vec{v}_{1}\right)$, then must $\vec{y} \in \operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$? Please justify your answer.

Solution: Yes. Let $\vec{y} \in \operatorname{span}\left(\vec{v}_{1}\right)$, then $\vec{y}=c_{1} \overrightarrow{v_{1}}=c_{1} \vec{v}_{1}+0 \vec{v}_{2} \in \operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$
(d) Prove that all vectors from \mathbb{R}^{3} lie in $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$. (Hint: row reduce the matrix whose columns are $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ and look at its rank)

Solution: row reduce the matrix

$$
\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -2 & 1 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{R_{2} \rightarrow R_{2}-R_{1}}\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & -3 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Thus, since this square matrix has rank 3 , all vectors lie in $\operatorname{span}\left(\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right)$
5. Given a matrix $A, \operatorname{Null}(A)$ is the collection of all vectors v such that $A v=\mathbf{0}, \operatorname{Row}(A)$ is the collection of all possible linear combinations of rows of A, and $\operatorname{Col}(A)$ is the collection of all possible linear combinations of columns of A. Given

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
4 & -2 & 1 \\
0 & 2 & 1
\end{array}\right]
$$

(a) Find a basis \mathcal{B} for $\operatorname{Row}(A)$.
(b) Find a basis \mathcal{B} for $\operatorname{Col}(A)$.
(c) Is $\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]$ in $\operatorname{Null}(A)$?
(d) Is $\left[\begin{array}{lll}6 & 4 & 2\end{array}\right]$ in $\operatorname{Row}(A)$?

Solution:

(a) Basis for $\operatorname{Row}(A)$ is the collection of nonzero rows of REF of A.

$$
\left[\begin{array}{ccc}
1 & 2 & 0 \\
4 & -2 & 1 \\
0 & 2 & 1
\end{array}\right] \xrightarrow{R_{2}=4 R_{1}-R_{2}}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 10 & -1 \\
0 & 2 & 1
\end{array}\right] \xrightarrow{R_{3}=R_{2}-5 R_{3}}\left[\begin{array}{ccc}
1 & 2 & 0 \\
0 & 10 & -1 \\
0 & 0 & -6
\end{array}\right]
$$

Thus, $\mathcal{B}=\left\{\left[\begin{array}{lll}1 & 2 & 0\end{array}\right],\left[\begin{array}{lll}0 & 10 & -1\end{array}\right],\left[\begin{array}{lll}0 & 0 & -6\end{array}\right]\right\}$
(b) Basis for $\operatorname{Col}(A)$ is the collection of pivotal columns of A.

Thus, $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 4 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.
(c) No. Because $A\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]=\left[\begin{array}{c}0 \\ 14 \\ 2\end{array}\right]$ is not a zero matrix.
(d) Yes. Suppose $x R_{1}+y R_{2}+z R_{3}=\left[\begin{array}{lll}6 & 4 & 2\end{array}\right]$, we get a linear system. We need to determine whether the linear system is consistent or not.
$\left[\begin{array}{ccc|c}1 & 0 & 0 & 6 \\ 2 & 10 & 0 & 4 \\ 0 & -1 & -6 & 2\end{array}\right] \xrightarrow{R_{2}=2 R_{1}-R_{2}}\left[\begin{array}{ccc|c}1 & 0 & 0 & 6 \\ 0 & -10 & 0 & 8 \\ 0 & -1 & -6 & 2\end{array}\right] \xrightarrow{R_{3}=R_{2}+10 R_{3}}\left[\begin{array}{ccc|c}1 & 0 & 0 & 6 \\ 0 & -10 & 0 & 8 \\ 0 & 0 & -60 & 28\end{array}\right]$
that implies the linear system is consistent.

