M20580 L.A. and D.E. Tutorial Worksheet 4

1. Let $\mathbf{b}_1 = \begin{bmatrix} 5\\4 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} 2\\3 \end{bmatrix}$; and $\mathbf{c}_1 = \begin{bmatrix} 3\\2 \end{bmatrix}$, $\mathbf{c}_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$ be two bases for \mathbb{R}^2 . Find $P_{\mathcal{C} \leftarrow \mathcal{B}}$.

Solution: One method to solve is by putting the matrix $\begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & | & \mathbf{b}_1 & \mathbf{b}_2 \end{bmatrix}$ in reduced row echelon form. Another solution is to recall that $P_{\mathcal{C}\leftarrow\mathcal{B}} = P_{\mathcal{C}\leftarrow\mathcal{E}}P_{\mathcal{E}\leftarrow\mathcal{B}}$ where \mathcal{E} is the standard basis. We know that $P_{\mathcal{E}\leftarrow\mathcal{B}} = \begin{bmatrix} 5 & 2 \\ 4 & 3 \end{bmatrix}$ and $P_{\mathcal{E}\leftarrow\mathcal{C}} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$. Calculate $P_{\mathcal{C}\leftarrow\mathcal{E}} = P_{\mathcal{E}\leftarrow\mathcal{C}}^{-1}$ as $\begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$. Bringing it all together gives $P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 1 & -1 \\ 2 & 5 \end{bmatrix}$.

2. Consider the following set of vectors $\left\{ \mathbf{v}_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 3\\0\\0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1\\-2\\-2 \end{bmatrix} \right\}$. If possible

write the vector $\mathbf{v} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ as a linear combination of the given vectors. Does the given set span \mathbb{R}^3 ? What is the dimension of the span of these vectors?

Solution:

A linear combination $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = \mathbf{v}$ gives to a system of linear equations in the variables a_1 , a_2 and a_3 . Let us solve for this system:

Γ	1	3	1	0		1	3	1	0		1	3	1	0]
	1	0	-2	1	\sim	0	-3	-3	1	\sim	0	-3	-3	1	.
	1	0	-2	0		0	-3	-3	0		0	0	0	$\begin{array}{c} 0 \\ 1 \\ -1 \end{array}$	

We see that the system is inconsistent and thus there is a no way to write \mathbf{v} as a linear combination of the given vectors.

This tells us that the given set does not span \mathbb{R}^3 since \mathbf{v} is a vector in \mathbb{R}^3 but \mathbf{v} is not in the span.

Let us check if the vectors are linearly dependent.

Γ	· 1	3	1	0		1	3	1	0		1	0	-2	0]
	1	0	-2	0	\sim	0	-3	-3	0	\sim	0	1	1	0	.
	1	0	-2	0		0	0	$\begin{array}{c}1\\-3\\0\end{array}$	0		0	0	0	0	

This tells us that $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + a_3\mathbf{v}_3 = 0$ where a_3 is free, $a_2 = -a_3$, and $a_1 = 2a_3$. So for example $2\mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3 = 0$. So we can write \mathbf{v}_3 as $\mathbf{v}_2 - 2\mathbf{v}_1$, and so the span of the original three vectors is the same as the span of $\{\mathbf{v}_1\mathbf{v}_2\}$. These two are linearly independent, and thus they form a basis for $\text{Span}(\{\mathbf{v}_1\mathbf{v}_2\})$. Thus the dimension is 2. (An alternative approach would be arguing that the span of the 3 vectors is the column space of the matrix $\begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & -2 \\ 1 & 0 & -2 \end{bmatrix}$ and remembering that the dimension of the column space is the same as the rank of the matrix, and this matrix has rank 2. 3. (a) Suppose that $\mathcal{B} = {\mathbf{b}_1, \mathbf{b}_2}$ and $\mathcal{C} = {\mathbf{c}_1, \mathbf{c}_2}$ are two bases for a vector space V. Also suppose that the change-of-basis matrix from \mathcal{B} to \mathcal{C} is given as

$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \left[\begin{array}{cc} 2 & 1 \\ 3 & 2 \end{array} \right].$$

For $\mathbf{v} = 2\mathbf{b}_1 + \mathbf{b}_2$, what is $[\mathbf{v}]_{\mathcal{C}}$, the \mathcal{C} -coordinates for \mathbf{v} ?

Solution: This question is graded for correctness. 1 point. $\mathbf{v} = 2\mathbf{b}_1 + \mathbf{b}_2$ means that $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. So $[\mathbf{v}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 2 & 1\\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 5\\8 \end{bmatrix}$. i.e. $[\mathbf{v}]_{\mathcal{C}} = 5\mathbf{c}_1 + 8\mathbf{c}_2$.

(b) Find the standard coordinates for C if $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 5 \end{bmatrix} \right\}$.

Solution: This part is worth 3 points. 1 point for using a suitable method, and 1 point each for \mathbf{c}_1 and \mathbf{c}_2 . We compute $P_{\mathcal{B}\leftarrow\mathcal{C}} = P_{\mathcal{C}\leftarrow\mathcal{B}}^{-1} = \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}$. So

$$[\mathbf{c}_1]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{C}}[\mathbf{c}_1]_{\mathcal{C}} = P_{\mathcal{B}\leftarrow\mathcal{C}}\begin{bmatrix}1\\0\end{bmatrix} = \begin{bmatrix}2\\-3\end{bmatrix}$$

So $\mathbf{c}_1 = 2\mathbf{b}_1 - 3\mathbf{b}_3 = \begin{bmatrix} -1\\ -9 \end{bmatrix}$. Similarly

 $[\mathbf{c}_2]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{C}}[\mathbf{c}_2]_{\mathcal{C}} = P_{\mathcal{B}\leftarrow\mathcal{C}}\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix}$

So $\mathbf{c}_1 = -\mathbf{b}_1 + 2\mathbf{b}_3 = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$.

An alternative approach would be to use the fact that $P_{\mathcal{C}\leftarrow\mathcal{B}} = P_{\mathcal{C}\leftarrow E}P_{\mathcal{E}\leftarrow B}$ and solve for $P_{\mathcal{E}\leftarrow\mathcal{C}}$.

(c) Calculate the standard coordinates for \mathbf{v} from (a) using the standard coordinates for \mathcal{B} given in (b) and also using the standard coordinates for \mathcal{C} using your answers for (a) and (b) and check that they agree.

Solution: 1 point for the correct answers.

Γ

Using
$$\mathcal{B}$$
:
 $2\begin{bmatrix}1\\3\end{bmatrix} + \begin{bmatrix}1\\5\end{bmatrix} = \begin{bmatrix}3\\11\end{bmatrix}$.
Using \mathcal{C} :
 $5\begin{bmatrix}-1\\-9\end{bmatrix} + 8\begin{bmatrix}1\\7\end{bmatrix} = \begin{bmatrix}3\\11\end{bmatrix}$.

4. Consider the basis
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\4\\3 \end{bmatrix}, \begin{bmatrix} 1\\3\\0 \end{bmatrix} \right\}$$
 for \mathbb{R}^3 .

(a) If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ -1\\ 4 \end{bmatrix}$, find \mathbf{x} (its coordinate representation in the standard basis).

Solution:

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix} \text{ means that the coordinates of } \mathbf{x} \text{ relative to the } \mathcal{B} \text{ basis is } \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix},$$
so
$$\mathbf{x} = 2 \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix} + 4 \cdot \begin{bmatrix} 1 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 10 \\ -1 \end{bmatrix}.$$

(b) What is $P_{\mathcal{B}\leftarrow\mathcal{E}}$ where \mathcal{E} is the standard basis?

Solution: We know that
$$P_{\mathcal{E}\leftarrow\mathcal{B}} = \begin{bmatrix} 1 & 3 & 1 \\ 1 & 4 & 3 \\ 1 & 3 & 0 \end{bmatrix}$$
 and that $P_{\mathcal{B}\leftarrow\mathcal{E}} = P_{\mathcal{E}\leftarrow\mathcal{B}}^{-1}$. Computing (using Gauss-Jordan elimination) gives $\begin{bmatrix} 9 & -3 & -5 \\ -3 & 1 & 2 \\ 1 & 0 & -1 \end{bmatrix}$.