M20580 L.A. and D.E. Tutorial Worksheet 4

1. Let $\mathbf{b}_{1}=\left[\begin{array}{l}5 \\ 4\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$; and $\mathbf{c}_{1}=\left[\begin{array}{l}3 \\ 2\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ be two bases for \mathbb{R}^{2}. Find $P_{\mathcal{C} \leftarrow \mathcal{B}}$.

Solution: One method to solve is by putting the matrix $\left[\begin{array}{ll|ll}\mathbf{c}_{1} & \mathbf{c}_{2} & \mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right]$ in reduced row echelon form. Another solution is to recall that $P_{\mathcal{C} \leftarrow \mathcal{B}}=P_{\mathcal{C} \leftarrow \mathcal{E}} P_{\mathcal{E} \leftarrow \mathcal{B}}$ where \mathcal{E} is the standard basis. We know that $P_{\mathcal{E} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}5 & 2 \\ 4 & 3\end{array}\right]$ and $P_{\mathcal{E} \leftarrow \mathcal{C}}=\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$. Calculate $P_{\mathcal{C} \leftarrow \mathcal{E}}=P_{\mathcal{E} \leftarrow \mathcal{C}}^{-1}$ as $\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$. Bringing it all together gives $P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{cc}1 & -1 \\ 2 & 5\end{array}\right]$.
2. Consider the following set of vectors $\left\{\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}1 \\ -2 \\ -2\end{array}\right]\right\}$. If possible write the vector $\mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ as a linear combination of the given vectors. Does the given set span \mathbb{R}^{3} ? What is the dimension of the span of these vectors?

Solution:

A linear combination $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=\mathbf{v}$ gives to a system of linear equations in the variables a_{1}, a_{2} and a_{3}. Let us solve for this system:

$$
\left[\begin{array}{ccc|c}
1 & 3 & 1 & 0 \\
1 & 0 & -2 & 1 \\
1 & 0 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 3 & 1 & 0 \\
0 & -3 & -3 & 1 \\
0 & -3 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 3 & 1 & 0 \\
0 & -3 & -3 & 1 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

We see that the system is inconsistent and thus there is a no way to write \mathbf{v} as a linear combination of the given vectors.
This tells us that the given set does not span \mathbb{R}^{3} since \mathbf{v} is a vector in \mathbb{R}^{3} but \mathbf{v} is not in the span.
Let us check if the vectors are linearly dependent.

$$
\left[\begin{array}{ccc|c}
1 & 3 & 1 & 0 \\
1 & 0 & -2 & 0 \\
1 & 0 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 3 & 1 & 0 \\
0 & -3 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccc|c}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

This tells us that $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=0$ where a_{3} is free, $a_{2}=-a_{3}$, and $a_{1}=2 a_{3}$. So for example $2 \mathbf{v}_{1}-\mathbf{v}_{2}+\mathbf{v}_{3}=0$. So we can write \mathbf{v}_{3} as $\mathbf{v}_{2}-2 \mathbf{v}_{1}$, and so the span of the original three vectors is the same as the span of $\left\{\mathbf{v}_{1} \mathbf{v}_{2}\right\}$. These two are linearly independent, and thus they form a basis for $\operatorname{Span}\left(\left\{\mathbf{v}_{1} \mathbf{v}_{2}\right\}\right)$. Thus the dimension is 2 . (An alternative approach would be arguing that the span of the 3 vectors is the column space of the matrix $\left[\begin{array}{ccc}1 & 3 & 1 \\ 1 & 0 & -2 \\ 1 & 0 & -2\end{array}\right]$ and remembering that the dimension of the column space is the same as the rank of the matrix, and this matrix has rank 2.)
3. (a) Suppose that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ are two bases for a vector space V. Also suppose that the change-of-basis matrix from \mathcal{B} to \mathcal{C} is given as

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right] .
$$

For $\mathbf{v}=2 \mathbf{b}_{1}+\mathbf{b}_{2}$, what is $[\mathbf{v}]_{\mathcal{C}}$, the \mathcal{C}-coordinates for \mathbf{v} ?
Solution: This question is graded for correctness. 1 point.
$\mathbf{v}=2 \mathbf{b}_{1}+\mathbf{b}_{2}$ means that $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$.
So

$$
[\mathbf{v}]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right] .
$$

i.e. $[\mathbf{v}]_{\mathcal{C}}=5 \mathbf{c}_{1}+8 \mathbf{c}_{2}$.
(b) Find the standard coordinates for \mathcal{C} if $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 5\end{array}\right]\right\}$.

Solution: This part is worth 3 points. 1 point for using a suitable method, and 1 point each for \mathbf{c}_{1} and \mathbf{c}_{2}.
We compute $P_{\mathcal{B} \leftarrow \mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}^{-1}=\left[\begin{array}{cc}2 & -1 \\ -3 & 2\end{array}\right]$. So

$$
\left[\mathbf{c}_{1}\right]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{C}}\left[\mathbf{c}_{1}\right]_{\mathcal{C}}=P_{\mathcal{B} \leftarrow \mathcal{C}}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

So $\mathbf{c}_{1}=2 \mathbf{b}_{1}-3 \mathbf{b}_{3}=\left[\begin{array}{l}-1 \\ -9\end{array}\right]$.
Similarly

$$
\left[\mathbf{c}_{2}\right]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{C}}\left[\mathbf{c}_{2}\right]_{\mathcal{C}}=P_{\mathcal{B} \leftarrow \mathcal{C}}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

So $\mathbf{c}_{1}=-\mathbf{b}_{1}+2 \mathbf{b}_{3}=\left[\begin{array}{l}1 \\ 7\end{array}\right]$.
An alternative approach would be to use the fact that $P_{\mathcal{C} \leftarrow \mathcal{B}}=P_{\mathcal{C} \leftarrow E} P_{\mathcal{E} \leftarrow B}$ and solve for $P_{\mathcal{E} \leftarrow \mathcal{C}}$.
(c) Calculate the standard coordinates for \mathbf{v} from (a) using the standard coordinates for \mathcal{B} given in (b) and also using the standard coordinates for \mathcal{C} using your answers for (a) and (b) and check that they agree.

Solution: 1 point for the correct answers.

Using \mathcal{B} :

$$
2\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\left[\begin{array}{l}
1 \\
5
\end{array}\right]=\left[\begin{array}{c}
3 \\
11
\end{array}\right]
$$

Using \mathcal{C} :

$$
5\left[\begin{array}{l}
-1 \\
-9
\end{array}\right]+8\left[\begin{array}{l}
1 \\
7
\end{array}\right]=\left[\begin{array}{c}
3 \\
11
\end{array}\right] .
$$

4. Consider the basis $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 3\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 3 \\ 0\end{array}\right]\right\}$ for \mathbb{R}^{3}.
(a) If $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]$, find \mathbf{x} (its coordinate representation in the standard basis).

Solution:
$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]$ means that the coordinates of \mathbf{x} relative to the \mathcal{B} basis is $\left[\begin{array}{c}2 \\ -1 \\ 4\end{array}\right]$,
so

$$
\mathbf{x}=2 \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+(-1) \cdot\left[\begin{array}{l}
3 \\
4 \\
3
\end{array}\right]+4 \cdot\left[\begin{array}{l}
1 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
10 \\
-1
\end{array}\right] .
$$

(b) What is $P_{\mathcal{B} \leftarrow \mathcal{E}}$ where \mathcal{E} is the standard basis?

Solution: We know that $P_{\mathcal{E} \leftarrow \mathcal{B}}=\left[\begin{array}{ccc}1 & 3 & 1 \\ 1 & 4 & 3 \\ 1 & 3 & 0\end{array}\right]$ and that $P_{\mathcal{B} \leftarrow \mathcal{E}}=P_{\mathcal{E} \leftarrow \mathcal{B}}^{-1}$. Computing (using Gauss-Jordan elimination) gives $\left[\begin{array}{ccc}9 & -3 & -5 \\ -3 & 1 & 2 \\ 1 & 0 & -1\end{array}\right]$.

