M20580 L.A. and D.E. Tutorial Worksheet 6

1. A linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ has out puts

$$
T\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right], \quad T\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]
$$

Find $T\left[\begin{array}{l}4 \\ 1\end{array}\right]$.

Solution: The augmented matrix $\left[\begin{array}{ll|l}2 & 2 & 4 \\ 3 & 1 & 1\end{array}\right]$ has REF $\left[\begin{array}{cc|c}1 & 0 & -1 / 2 \\ 0 & 1 & 5 / 2\end{array}\right]$.Thus,

$$
\begin{gathered}
{\left[\begin{array}{l}
4 \\
1
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\frac{5}{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]} \\
T\left[\begin{array}{l}
4 \\
1
\end{array}\right]=-\frac{1}{2} T\left[\begin{array}{l}
2 \\
3
\end{array}\right]+\frac{5}{2} T\left[\begin{array}{l}
2 \\
1
\end{array}\right]=-\frac{1}{2}\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]+\frac{5}{2}\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
3 / 2 \\
11 / 2
\end{array}\right] .
\end{gathered}
$$

2. Let $\mathcal{B}=\left\{1+t, 1-t^{2}, 1+t+t^{2}\right\}$ be a basis for the space of polynomials of degree at most 2 . Find the coordinate vector $[p]_{\mathcal{B}}$ of $p(t)=2+3 t+4 t^{2}$.

Solution: This question is the same as writing $p(t)$ as a linear combination of $1+t, 1-t^{2}, 1+t+t^{2}$. We pick standard basis for \mathcal{P}_{2}. Then we have the augmented matrix

$$
\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
1 & 0 & 1 & 3 \\
0 & -1 & 1 & 4
\end{array}\right] \text {, which has REF }\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 3
\end{array}\right]
$$

Hence, $[p]_{\mathcal{B}}=\left[\begin{array}{c}0 \\ -1 \\ 3\end{array}\right]$.
3. Let $T: M_{2 \times 2} \rightarrow \mathbb{R}^{2}$ be the linear transformation $T\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=\left[\begin{array}{c}a+b+c \\ d\end{array}\right]$. Consider the basis $B=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 0\end{array}\right]\right\}$ for \mathbb{R}^{2}.
(a) Find the matrix of T relative to the standard basis for $M_{2 \times 2}$ and the basis \mathcal{B} of \mathbb{R}^{2}, i.e., find $[T]_{B \leftarrow s t d}$.
(b) Find a basis for the kernel of T.

Solution:

(a) We have

$$
T\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{c}
1+0+0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Similarly,

$$
T\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad T\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad T\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

This gives $[T]_{s t d \leftarrow s t d}=\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
The change of basis matrix from \mathcal{B} to standard matrix in \mathbb{R}^{2} is

$$
[i d]_{\mathcal{B} \leftarrow s t d}=[i d]_{s t d \leftarrow \mathcal{B}}^{-1}=\left[\begin{array}{rr}
1 & -1 \\
1 & 0
\end{array}\right]^{-1}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right] .
$$

So,

$$
\begin{aligned}
{[T]_{\mathcal{B} \leftarrow s t d} } & =[i d \circ T]_{\mathcal{B} \leftarrow \text { std }}=[i d]_{\mathcal{B} \leftarrow s t d}[T]_{s t d \leftarrow s t d} \\
& =\left[\begin{array}{rrr}
0 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
0 & 0 & 0 & 1 \\
-1 & -1 & -1 & 1
\end{array}\right] .
\end{aligned}
$$

(b) Putting the matrix $[T]_{\mathcal{B} \leftarrow \text { std }}$ in RREF, we get $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$. Therefore, we have $a=-b-c$ and $d=0$. So, a basis for the $\operatorname{ker}(T)$ is $\left\{\left[\begin{array}{rr}1 & -1 \\ 0 & 0\end{array}\right],\left[\begin{array}{rr}1 & 0 \\ -1 & 0\end{array}\right]\right\}$.
4. (a) Let $S: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ be the integration linear transformation, i.e.,

$$
S\left(a_{0}+a_{1} x+a_{2} x^{2}\right)=\int_{0}^{x}\left(a_{0}+a_{1} t+a_{2} t^{2}\right) d t=a_{0} x+\frac{a_{1}}{2} x^{2}+\frac{a_{2}}{3} x^{3} .
$$

Find the matrix representation of S with respect to the standard bases $\mathcal{A}=$ $\left\{1, x, x^{2}\right\}$ for \mathcal{P}_{2} and $\mathcal{B}=\left\{1, x, x^{2}, x^{3}\right\}$ for \mathcal{P}_{3}.
(b) Find the matrix of the differentiation linear transformation $D: \mathcal{P}_{3} \rightarrow \mathcal{P}_{2}$, i.e.,

$$
D\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=\frac{d}{d x}\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}\right)=a_{1}+2 a_{2} x+3 a_{3} x^{2}
$$

with respect to the standard bases for \mathcal{P}_{3} and \mathcal{P}_{2}.
(c) What is the matrix representation of $D \circ S$ with respect to the standard basis \mathcal{A} of \mathcal{P}_{3}, i.e., $\left[\frac{d}{d x} \int_{0}^{x}\right]$?
(d) Find a basis for the kernel of S and a basis for the kernel of D.
(e) Find a basis for the range of S and a basis for the range of D.

Solution:

(a) $[S]_{\mathcal{B} \leftarrow \mathcal{A}}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & 1 / 3\end{array}\right]$.
(b) $[D]_{\mathcal{A} \leftarrow \mathcal{B}}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$
(c) $[D]_{\mathcal{A} \leftarrow \mathcal{B}}[S]_{\mathcal{B} \leftarrow \mathcal{A}}=I_{3}$.
(d) There are no free variables in the matrix of S. This tells us immediately that the kernel of $[S]_{\mathcal{B} \leftarrow \mathcal{A}}$ is consists of just the zero vector, so the kernel of S is the set contain only zero polynomial. By convention, the basis for $\{0\}$ is \varnothing (the empty set).

In the matrix of D, we can see that there is one free variable (the first variable). Hence, a basis for the kernel of $[D]_{\mathcal{A} \leftarrow \mathcal{B}}$ is $\left\{(1,0,0,0)^{T}\right\}$, so converting back to polynomial form, a basis for $\operatorname{ker}(D)$ is $\{1\}$ (the set of one polynomial given by the constant function 1).
(e) In order to obtain a basis for the range, we first find a basis for the column space of the matrix representation. For $[S]_{\mathcal{B} \leftarrow \mathcal{A}}$, we can take all three columns as a
basis for $\operatorname{col}\left([S]_{\mathcal{B} \leftarrow \mathcal{A}}\right)$, so converting back to polynomial forms in \mathcal{P}_{3} (because the range of S is a subset of \mathcal{P}_{3}), a basis for range (S) is $\left\{x, \frac{1}{2} x^{2}, \frac{1}{3} x^{3}\right\}$.
Similarly, we can take columns $2,3,4$ as a basis for $\operatorname{col}\left([D]_{\mathcal{B} \leftarrow \mathcal{A}}\right)$, and converting back to polynomial form gives us that a basis for range (D) is $\left\{1,2 x, 3 x^{2}\right\}$.

