M20580 L.A. and D.E. Tutorial Worksheet 6

1. A linear transformation $T:\mathbb{R}^2\to\mathbb{R}^3$ has out puts

$$T\begin{bmatrix}2\\3\end{bmatrix} = \begin{bmatrix}1\\2\\4\end{bmatrix}, \qquad T\begin{bmatrix}2\\1\end{bmatrix} = \begin{bmatrix}0\\1\\3\end{bmatrix}.$$

Find $T\begin{bmatrix}4\\1\end{bmatrix}$.

Solution: The augmented matrix
$$\begin{bmatrix} 2 & 2 & | & 4 \\ 3 & 1 & | & 1 \end{bmatrix}$$
 has REF $\begin{bmatrix} 1 & 0 & | & -1/2 \\ 0 & 1 & | & 5/2 \end{bmatrix}$. Thus,
 $\begin{bmatrix} 4 \\ 1 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \frac{5}{2} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
 $T \begin{bmatrix} 4 \\ 1 \end{bmatrix} = -\frac{1}{2}T \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \frac{5}{2}T \begin{bmatrix} 2 \\ 1 \end{bmatrix} = -\frac{1}{2} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + \frac{5}{2} \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 3/2 \\ 11/2 \end{bmatrix}$.

2. Let $\mathcal{B} = \{1 + t, 1 - t^2, 1 + t + t^2\}$ be a basis for the space of polynomials of degree at most 2. Find the coordinate vector $[p]_{\mathcal{B}}$ of $p(t) = 2 + 3t + 4t^2$.

Solution: This question is the same as writing p(t) as a linear combination of $1+t, 1-t^2, 1+t+t^2$. We pick standard basis for \mathcal{P}_2 . Then we have the augmented matrix $\begin{bmatrix} 1 & 1 & 1 & | & 2 \\ 1 & 0 & 1 & | & 3 \\ 0 & -1 & 1 & | & 4 \end{bmatrix}$, which has REF $\begin{bmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 3 \end{bmatrix}$.
Hence, $[p]_{\mathcal{B}} = \begin{bmatrix} 0 \\ -1 \\ 3 \end{bmatrix}$.

3. Let $T: M_{2\times 2} \to \mathbb{R}^2$ be the linear transformation $T\left(\begin{bmatrix}a & b\\c & d\end{bmatrix}\right) = \begin{bmatrix}a+b+c\\d\end{bmatrix}$. Consider the basis $B = \left\{ \begin{bmatrix}1\\1\end{bmatrix}, \begin{bmatrix}-1\\0\end{bmatrix} \right\}$ for \mathbb{R}^2 .

- (a) Find the matrix of T relative to the standard basis for $M_{2\times 2}$ and the basis \mathcal{B} of \mathbb{R}^2 , i.e., find $[T]_{B\leftarrow std}$.
- (b) Find a basis for the kernel of T.

Solution:

(a) We have

$$T\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix} = \begin{bmatrix}1+0+0\\0\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}$$

Similarly,

$$T\begin{bmatrix}0&1\\0&0\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}, \quad T\begin{bmatrix}0&0\\1&0\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix}, \quad T\begin{bmatrix}0&0\\0&1\end{bmatrix} = \begin{bmatrix}0\\1\end{bmatrix},$$

This gives $[T]_{std \leftarrow std} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

The change of basis matrix from \mathcal{B} to standard matrix in \mathbb{R}^2 is

$$[id]_{\mathcal{B}\leftarrow std} = [id]_{std\leftarrow\mathcal{B}}^{-1} = \begin{bmatrix} 1 & -1\\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1\\ -1 & 1 \end{bmatrix}.$$

So,

$$[T]_{\mathcal{B}\leftarrow std} = [id \circ T]_{\mathcal{B}\leftarrow std} = [id]_{\mathcal{B}\leftarrow std}[T]_{std\leftarrow std} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ -1 & -1 & -1 & 1 \end{bmatrix}.$$

(b) Putting the matrix $[T]_{\mathcal{B}\leftarrow std}$ in RREF, we get $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Therefore, we have a = -b - c and d = 0. So, a basis for the ker(T) is $\left\{ \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} \right\}$.

4. (a) Let $S: \mathcal{P}_2 \to \mathcal{P}_3$ be the integration linear transformation, i.e.,

$$S(a_0 + a_1x + a_2x^2) = \int_0^x (a_0 + a_1t + a_2t^2) dt = a_0x + \frac{a_1}{2}x^2 + \frac{a_2}{3}x^3.$$

Find the matrix representation of S with respect to the standard bases $\mathcal{A} = \{1, x, x^2\}$ for \mathcal{P}_2 and $\mathcal{B} = \{1, x, x^2, x^3\}$ for \mathcal{P}_3 .

(b) Find the matrix of the differentiation linear transformation $D: \mathcal{P}_3 \to \mathcal{P}_2$, i.e.,

$$D(a_0 + a_1x + a_2x^2 + a_3x^3) = \frac{d}{dx}(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1 + 2a_2x + 3a_3x^2$$

with respect to the standard bases for \mathcal{P}_3 and \mathcal{P}_2 .

- (c) What is the matrix representation of $D \circ S$ with respect to the standard basis \mathcal{A} of \mathcal{P}_3 , i.e., $\left[\frac{d}{dx}\int_0^x\right]$?
- (d) Find a basis for the kernel of S and a basis for the kernel of D.
- (e) Find a basis for the range of S and a basis for the range of D.

Solution:

(a)
$$[S]_{\mathcal{B}\leftarrow\mathcal{A}} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$$
.
(b) $[D]_{\mathcal{A}\leftarrow\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$

- (c) $[D]_{\mathcal{A}\leftarrow\mathcal{B}}[S]_{\mathcal{B}\leftarrow\mathcal{A}} = I_3.$
- (d) There are no free variables in the matrix of S. This tells us immediately that the kernel of $[S]_{\mathcal{B}\leftarrow\mathcal{A}}$ is consists of just the zero vector, so the kernel of S is **the set contain only zero polynomial**. By convention, the basis for $\{\mathbf{0}\}$ is \emptyset (the empty set).

In the matrix of D, we can see that there is one free variable (the first variable). Hence, a basis for the kernel of $[D]_{\mathcal{A}\leftarrow\mathcal{B}}$ is $\{(1,0,0,0)^T\}$, so converting back to polynomial form, a basis for ker(D) is $\{1\}$ (the set of one polynomial given by the constant function 1).

(e) In order to obtain a basis for the range, we first find a basis for the column space of the matrix representation. For $[S]_{\mathcal{B}\leftarrow\mathcal{A}}$, we can take all three columns as a basis for $\operatorname{col}([S]_{\mathcal{B}\leftarrow\mathcal{A}})$, so converting back to polynomial forms in \mathcal{P}_3 (because the range of S is a subset of \mathcal{P}_3), a basis for $\operatorname{range}(S)$ is $\{x, \frac{1}{2}x^2, \frac{1}{3}x^3\}$.

Similarly, we can take columns 2, 3, 4 as a basis for $\operatorname{col}([D]_{\mathcal{B}\leftarrow\mathcal{A}})$, and converting back to polynomial form gives us that a basis for $\operatorname{range}(D)$ is $\{1, 2x, 3x^2\}$.