M20580 L.A. and D.E. Tutorial Worksheet 7

1. Let $T: \mathcal{P}_{1} \rightarrow \mathcal{P}_{1}$ be the linear transformation defined by $T(p(x))=p(x-1)$ and let $S: \mathcal{P}_{1} \rightarrow \mathcal{P}_{2}$ be the linear transformation defined by $S(q(x))=q\left(x^{2}+x\right)$. Consider the bases $\mathcal{B}=\{1, x\}$ and $\mathcal{C}=\left\{1, x, x^{2}\right\}$ be the standard bases for \mathcal{P}_{1} and \mathcal{P}_{2} respectively. Compute $[S \circ T]_{\mathcal{C} \leftarrow \mathcal{B}}$ in two ways:
(a) By finding directly and then computing its matrix;
(b) and by finding the matrices of S and T separately and using the fact that

$$
[S \circ T]_{\mathcal{C} \leftarrow \mathcal{B}}=[S]_{\mathcal{C} \leftarrow \mathcal{B}}[T]_{\mathcal{B}} .
$$

Hint: make sure your answers for (a) and (b) agree.

Solution: For (a) note that $S \circ T(1)=1$ and $S \circ T(x)=S(x-1)=\left(x^{2}+x\right)-1$. Thus

$$
[S \circ T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[[S \circ T(1)]_{\mathcal{C}} \quad: \quad[S \circ T(x)]_{\mathcal{C}}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

For (b) We have

$$
[T]_{\mathcal{B}}=\left[\begin{array}{lll}
{[T(1)]_{\mathcal{B}}} & : & {[T(x)]_{\mathcal{B}}}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
$$

and

$$
[S]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{lll}
{[S(1)]_{\mathcal{C}}} & : & {[S(x)]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

Multiplying $[S]_{\mathcal{C} \leftarrow \mathcal{B}}$ with $[T]_{\mathcal{B}}$ gives

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 1 \\
0 & 1
\end{array}\right]
$$

2. Consider the linear transformation $T: \mathcal{P}_{2} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(p(x))=\left[\begin{array}{c}
p(0) \\
p(1) \\
p(-1)
\end{array}\right] .
$$

Determine whether T is invertible as a linear transformation by considering its matrix with respect to the standard bases $\mathcal{B}=\left\{1, x, x^{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ respectively.
If it is invertible find it's inverse in terms of these standard bases, and also find a polynomial in $p(x)=a+b x+c x^{2}$ such that $T(p(x))=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]^{T}$. Hint: recall that if T is invertible then $\left([T]_{\mathcal{C} \leftarrow \mathcal{B}}\right)^{-1}=\left[T^{-1}\right]_{\mathcal{B} \leftarrow \mathcal{C}}$.

Solution: Recall that we have

$$
[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
{[T(1)]_{\mathcal{C}}} & : \quad[T(x)]_{\mathcal{C}}
\end{array}:\left[T\left(x^{2}\right)\right]_{\mathcal{C}}\right]
$$

2 points for Computing gives

$$
[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

1 point for Calculating the inverse gives

$$
\left[T^{-1}\right]_{\mathcal{B} \leftarrow \mathcal{C}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / 2 & -1 / 2 \\
-1 & 1 / 2 & 1 / 2
\end{array}\right]
$$

Multiplying this last matrix by $\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]^{T}$ gives

$$
\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

and thus $p(x)=1-x+2 x^{2}$ satisfies $T(p(x))=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]^{T} .2$ points for calculating $p(x)$.
3. Let $\mathcal{E}:=\left\{e^{2 x}, e^{-2 x}\right\}$ and let $M:=\operatorname{span} \mathcal{E}$ be a space spanned by \mathcal{E}. Consider another basis $\mathcal{B}:=\{\sinh (2 x), \cosh (2 x)\}$ of M, where

$$
\sinh (2 x)=\frac{e^{2 x}-e^{-2 x}}{2}, \quad \cosh (2 x)=\frac{e^{2 x}+e^{-2 x}}{2}
$$

a) Find the change of basis matrix $P_{\mathcal{E} \leftarrow \mathcal{B}}$.
b) Find the standard matrix $[D]_{\mathcal{E}}$ of the linear transformation $D: M \rightarrow M$ given by $D(f(x))=\frac{d f}{d x}$.
c) Find the standard matrix $[D]_{\mathcal{B}}$. Hint: recall that $[D]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{E}}[D]_{\mathcal{E}} P_{\mathcal{E} \leftarrow \mathcal{B}}$.

Solution: Let us pick \mathcal{E} as the standard basis of M. In terms of \mathcal{E}, the basis \mathcal{B} is

$$
\mathcal{B}=\left\{[\sinh (2 x)]_{\mathcal{E}}, \quad[\cosh (2 x)]_{\mathcal{E}}\right\}=\left\{\left[\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right],\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]\right\}
$$

Accordingly, the change of basis matrix $P_{\mathcal{E} \leftarrow \mathcal{B}}$ is simply a concatenation of the latter columns:

$$
P_{\mathcal{E} \leftarrow \mathcal{B}}=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right] ;
$$

its inverse is

$$
P_{\mathcal{B} \leftarrow \mathcal{E}}=2\left[\begin{array}{cc}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

Now, the operator D acts upon $e^{2 x}$ and $e^{-2 x}$ as

$$
D\left(e^{2 x}\right)=2 e^{2 x}, \quad D\left(e^{-2 x}\right)=-2 e^{-2 x}
$$

hence

$$
[D]_{\mathcal{E}}=\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right]
$$

Therefore,

$$
[D]_{\mathcal{B}}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right]
$$

A more direct way of computing $[D]_{\mathcal{B}}$ would be to notice that $D(\sinh (2 x))=$ $2 \cosh (2 x)$ and $D(\cosh (2 x))=2 \sinh (2 x)$, which gives the columns of $[D]_{\mathcal{B}}$.
4. Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be a linear transformation defined by

$$
T(A):=A B-B A, \quad \text { where } \quad B=\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right] .
$$

a) Find the matrix $[T]_{\mathcal{E}}$ of T in the standard basis

$$
\mathcal{E}=\left\{E_{1}:=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], E_{2}:=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], E_{3}:=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], E_{4}:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

b) Use $[T]_{\mathcal{E}}$ to compute the null space of T.

Solution: The action of T upon $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is given by

$$
T(A)=\left[\begin{array}{ll}
-a+b & a-b \\
-c+d & c-d
\end{array}\right]-\left[\begin{array}{cc}
-a+c & d-b \\
a-c & b-d
\end{array}\right]=\left[\begin{array}{ll}
b-c & a-d \\
d-a & c-b
\end{array}\right] .
$$

Therefore, the matrix of T in \mathcal{E} is

$$
[T]_{\mathcal{E}}=\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

Row reducing gives the matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

Now solving for 0 gives two free variables, $c=s$ and $d=t$ and we have the solutions

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=s\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1
\end{array}\right] .
$$

i.e. the null space is $\operatorname{Span}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right)$.

