Math 20580 L.A. and D.E. Tutorial Worksheet 9

1. Determine whether the statements are true or false. If true, quickly explain why, and give a counterexample if false.
(a) Every linearly independent set of vectors is orthogonal.
(b) Every orthogonal set of vectors is linearly independent.
(c) Every nontrivial subspace of \mathbb{R}^{n} has an orthonormal basis.
(d) For any vector \mathbf{x}, the vector $\operatorname{proj}_{W} \mathbf{x}$ is orthogonal to every vector in the vector space W.
(e) Every orthogonal set is orthonormal.
(f) Suppose A is an $n \times n$ diagonalizable matrix with eigenvalues $a_{1}, a_{2}, \ldots, a_{n}$ (not necessarily distinct), then the trace of A (the sum of diagonal entries) is $a_{1}+a_{2}+$ $\cdots+a_{n}$
(g) Suppose A is an $n \times n$ diagonalizable matrix with eigenvalues $a_{1}, a_{2}, \ldots, a_{n}$ (not necessarily distinct), then the determinant of A is $a_{1} \cdot a_{2} \ldots a_{n}$.
(Hint for (f) and (g): First, recall that for two square matrices A and B of the same size, we have $\operatorname{trace}(A B)=\operatorname{trace}(B A)$ and $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Now if A is similar to a diagonal matrix D, what are the relation between the trace or determinant of A and the trace or determinant D ?)

Solution:

(a) False. In \mathbb{R}^{2}, the vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ form a basis, hence they are linearly independent, but they are not orthogonal since $\left[\begin{array}{l}1 \\ 0\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]=1 \neq 0$.
(b) False. Any orthogonal set of nonzero vectors is linearly independent. The set $\{0\}$ is orthogonal but not linearly independent.
(c) True. Any nontrivial subspace has a basis, and we can use the Gram-Schmidt algorithm to find an orthonormal basis.
(d) False. W contains the vector $\operatorname{proj}_{W} \mathbf{x}$. What is true is that $\mathbf{x}-\operatorname{proj}_{W} \mathbf{x}$ is orthogonal to every vector in W.
Take, for instance, $W=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$ and $\mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$; then $\operatorname{proj}_{W} \mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is not orthogonal to W.
(e) False. $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right]\right\}$ is orthogonal but not orthonormal.
(f) True. Since A is diagonalizable, there exists an invertible matrix P such that $D=P^{-1} A P$ is a diagonal matrix, with diagonal entries that are exactly the eigenvalues a_{1}, \ldots, a_{n} of A (up to permutation of diagonal entries).
Hence trace $(D)=a_{1}+a_{2}+\cdots+a_{n}$ and A and D are similar matrices.
Using the hint with $P D$ and P^{-1}, we have
$\operatorname{trace}(A)=\operatorname{trace}\left(P D P^{-1}\right)=\operatorname{trace}\left(P^{-1} P D\right)=\operatorname{trace}(D)=a_{1}+a_{2}+\cdots+a_{n}$.
(g) True. Similar to part (f), we have $\operatorname{det}(D)=a_{1} a_{2} \ldots a_{n}$. Since $A=P D P^{-1}$, we have

$$
\begin{aligned}
\operatorname{det}(A) & =\operatorname{det}\left(P D P^{-1}\right)=\operatorname{det}(P) \operatorname{det}(D) \operatorname{det}\left(P^{-1}\right) \\
& =\operatorname{det}(D)\left[\operatorname{det}(P) \operatorname{det}\left(P^{-1}\right)\right] \\
& =\operatorname{det}(D) \operatorname{det}\left(P P^{-1}\right) \\
& =\operatorname{det}(D) \operatorname{det}\left(I_{n}\right)=\operatorname{det}(D)=a_{1} a_{2} \ldots a_{n}
\end{aligned}
$$

2. Let $V=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 4 \\ 2\end{array}\right]\right\}$ be a subspace of \mathbb{R}^{4}.

Find a basis for the orthogonal complement V^{\perp} of V.

Solution: If \mathbf{x} is in V^{\perp}, then $\mathbf{x} \cdot\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 3\end{array}\right]=0$ and $\mathbf{x} \cdot\left[\begin{array}{l}2 \\ 0 \\ 4 \\ 2\end{array}\right]=0$.
This implies that \mathbf{x} is in the null space of $A=\left[\begin{array}{cccc}1 & -1 & 2 & 3 \\ 2 & 0 & 4 & 2\end{array}\right]$, so we need to solve $A \mathrm{x}=\mathbf{0}$.
The augmented matrix $\left[\begin{array}{cccc|c}1 & -1 & 2 & 3 & 0 \\ 2 & 0 & 4 & 2 & 0\end{array}\right]$ has the RREF $\left[\begin{array}{cccc|c}1 & 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & -2 & 0\end{array}\right]$.
From this, we see that:

$$
\mathbf{x}=\left[\begin{array}{c}
-2 s-t \\
2 t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-1 \\
2 \\
0 \\
1
\end{array}\right]
$$

Therefore, a basis for V^{\perp} is span $\left\{\left[\begin{array}{c}-2 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 0 \\ 1\end{array}\right]\right\}$.
3. It is known that the set $\mathcal{B}=\left\{\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{c}1 \\ -1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{4}=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{4} (you don't need to verify this).
Use Gram-Schmidt process to find an orthonormal basis for \mathbb{R}^{4} from \mathcal{B}.

Solution: For notational convenience, we will write column vector as a
First, we fix $\mathbf{u}_{1}=\mathbf{v}_{1}$ and obtain the unit vector

$$
\mathbf{e}_{1}=\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}=\frac{(1,1,1,1)^{T}}{\sqrt{1^{2}+1^{2}+1^{2}+1^{2}}}=\frac{1}{2}(1,1,1,1)^{T}
$$

Next, we have

$$
\begin{aligned}
\mathbf{u}_{2} & =\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{v}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}=\mathbf{v}_{2}-\left(\mathbf{v}_{2} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1} \\
& =(-1,1,1,1)^{T}-\left[(-1,1,1,1)^{T} \cdot \frac{1}{2}(1,1,1,1)^{T}\right] \frac{1}{2}(1,1,1,1)^{T} \\
& =\frac{1}{2}(-3,1,1,1)^{T} .
\end{aligned}
$$

Normalizing \mathbf{u}_{2} gives

$$
\mathbf{e}_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|}=\frac{\frac{1}{2}(-3,1,1,1)^{T}}{\frac{1}{2} \sqrt{(-3)^{2}+1^{2}+1^{2}+1^{2}}}=\frac{1}{2 \sqrt{3}}(-3,1,1,1)^{T}
$$

For the third vector, we have

$$
\begin{aligned}
\mathbf{u}_{3}= & \mathbf{v}_{3}-\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{v}_{3}-\operatorname{proj}_{\mathbf{u}_{2}} \mathbf{v}_{3}=\mathbf{v}_{3}-\left(\mathbf{v}_{3} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}-\left(\mathbf{v}_{3} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{2} \\
= & (1,-1,1,1)^{T}-\left[(1,-1,1,1)^{T} \cdot \frac{1}{2}(1,1,1,1)^{T}\right] \frac{1}{2}(1,1,1,1)^{T} \\
& \quad-\left[(1,-1,1,1)^{T} \cdot \frac{1}{2 \sqrt{3}}(-3,1,1,1)^{T}\right] \frac{1}{2 \sqrt{3}}(-3,1,1,1)^{T} \\
& =\frac{1}{3}(0,-4,2,2)^{T}
\end{aligned}
$$

Normalizing \mathbf{u}_{3} gives

$$
\mathbf{e}_{3}=\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|}=\frac{\frac{1}{3}(0,-4,2,2)^{T}}{\frac{1}{3} \sqrt{0^{2}+(-4)^{2}+2^{2}+2^{2}}}=\frac{1}{2 \sqrt{6}}(0,-4,2,2)^{T}
$$

Finally, for the last vector we have

$$
\begin{aligned}
\mathbf{u}_{4}= & \mathbf{v}_{4}-\left(\mathbf{v}_{4} \cdot \mathbf{e}_{1}\right) \mathbf{e}_{1}-\left(\mathbf{v}_{4} \cdot \mathbf{e}_{2}\right) \mathbf{e}_{2}-\left(\mathbf{v}_{4} \cdot \mathbf{e}_{3}\right) \mathbf{e}_{3} \\
= & (1,1,-1,1)^{T}-\left[(1,1,-1,1)^{T} \cdot \frac{1}{2}(1,1,1,1)^{T}\right] \frac{1}{2}(1,1,1,1)^{T} \\
& \quad-\left[(1,1,-1,1)^{T} \cdot \frac{1}{2 \sqrt{3}}(-3,1,1,1)^{T}\right] \frac{1}{2 \sqrt{3}}(-3,1,1,1)^{T} \\
& \quad-\left[(1,1,-1,1)^{T} \cdot \frac{1}{2 \sqrt{6}}(0,-4,2,2)^{T}\right] \frac{1}{2 \sqrt{6}}(0,-4,2,2)^{T} \\
= & (0,0,-1,1)^{T}
\end{aligned}
$$

Normalizing \mathbf{u}_{4} gives

$$
\mathbf{e}_{4}=\frac{\mathbf{u}_{4}}{\left\|\mathbf{u}_{4}\right\|}=\frac{(0,0,-1,1)^{T}}{\sqrt{0^{2}+0^{2}+(-1)^{2}+1^{2}}}=\frac{1}{\sqrt{2}}(0,0,-1,1)^{T}
$$

Hence, an orthonormal basis for \mathbb{R}^{4} is $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{4}\right\}$ where

$$
\mathbf{e}_{1}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{e}_{2}=\frac{1}{2 \sqrt{3}}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{e}_{3}=\frac{1}{2 \sqrt{6}}\left[\begin{array}{c}
0 \\
-4 \\
2 \\
2
\end{array}\right], \quad \mathbf{e}_{4}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right] .
$$

4. Find the $Q R$ factorization of the matrix

$$
A=\left[\begin{array}{lll}
0 & -1 & 2 \\
1 & -1 & 2 \\
1 & -1 & 0
\end{array}\right]
$$

Solution: First we use Gram-Schmidt process to produce an orthogonal set.

$$
\begin{aligned}
v_{1} & =x_{1}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \\
v_{2} & =x_{2}-\left(\frac{v_{1} \cdot x_{2}}{v_{1} \cdot v_{1}}\right) v_{1}=\left[\begin{array}{c}
-1 \\
-1 \\
-1
\end{array}\right]-\frac{-2}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right] \\
v_{3} & =x_{3}-\left(\frac{v_{1} \cdot x_{3}}{v_{1} \cdot v_{1}}\right) v_{1}-\left(\frac{v_{2} \cdot x_{3}}{v_{2} \cdot v_{2}}\right) v_{2} \\
& =\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]-\frac{-2}{1}\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]
\end{aligned}
$$

Then the orthonormal basis for $\operatorname{col}(A)$ is

$$
\left\{\frac{v_{1}}{\left\|v_{1}\right\|}, \frac{v_{2}}{\left\|v_{2}\right\|}, \frac{v_{3}}{\left\|v_{3}\right\|}\right\}=\left\{\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]\right\} .
$$

$A=Q R$ for some upper triangular matrix R, to find R we use the fact that Q has orthonormal columns, hence $Q^{T} Q=I$. Therefore $Q^{T} A=Q^{T} Q R=I R=R$

$$
\begin{aligned}
R=Q^{T} A= & {\left[\begin{array}{ccc}
0 & 1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 & 0 & 0 \\
0 & 1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 2 \\
1 & -1 & 2 \\
1 & -1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
2 / \sqrt{2} & -2 / \sqrt{2} & 2 / \sqrt{2} \\
0 & 1 & -2 \\
0 & 0 & 2 / \sqrt{2}
\end{array}\right] . } \\
& A=Q R=\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 / \sqrt{2} & 0 & 1 / \sqrt{2} \\
1 / \sqrt{2} & 0 & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & -\sqrt{2} & \sqrt{2} \\
0 & 1 & -2 \\
0 & 0 & \sqrt{2}
\end{array}\right] .
\end{aligned}
$$

