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M20580 L.A. and D.E. Tutorial
Worksheet 10 solutions

Sections 2.4, 2.5, 2.6

1. Solve the initial value problem

y′ = y1/3, y(0) = 1 for t ≥ 0.

Why is your solution unique?

Solution:

y′ = y1/3 is a separable, autonomous, first-order, non-linear differential equation.

y−1/3 dy = dt =⇒ 3
2
y2/3 = t+ c.

The initial condition y(0) = 1 =⇒ c = 3
2
, so the solution is y =

(
2
3
t+ 1

)3/2
.

This solution is unique by Theorem 2.4.2: f(t, y) = y1/3 is continuous everywhere, and
∂f
∂y

= 1
3
y−2/3 is continuous whenever y 6= 0. So whenever (t0, y0) does not lie on the t-axis

in the ty-plane (corresponding to the region y 6= 0), there is a unique solution to the
differential equation y′ = y1/3 that passes through (t0, y0). In our case, (0, 1) does not
lie on the t-axis, so the solution above is unique.

2. Consider the initial value problem

y′ = y1/3, y(0) = 0 for t ≥ 0.

(a) What can you say about the existence or uniqueness of solutions to the initial value
problem from Theorem 2.4.2?

Solution:

Since (0, 0) lies on the t-axis where ∂f
∂y

does not exist, we cannot apply Theorem 2.4.2
to guarantee uniqueness of solution. However, since f is continuous everywhere, we can
still say that a solution exists (even though it may not be unique).

(b) Verify that the following differentiable functions, defined for an arbitrary positive t0,
are solutions to the initial value problem:

y =

{
0, if 0 ≤ t < t0,

±[2
3
(t− t0)]3/2, if t ≥ t0.

In particular, there are infinitely many solutions.

Solution:

It is clear that y(0) = 0 is satisfied.

For 0 ≤ t ≤ t0, y
′ = 0 = y1/3.

For t ≥ t0, y
′ = ±[2

3
(t− t0)]1/2 = y1/3.
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Figure 2.4.1 (taken from the textbook) shows a few of these solutions given in part (b).

Note that If (t0, y0) is any point not on the t-axis, then Theorem 2.4.2 guarantees that
there is a unique solution of the differential equation y′ = y1/3 passing through (t0, y0).

(c) Why is there no solution to the initial value problem that passes through (1, 1)?

Solution:

Since (1, 1) does not lie on the t-axis, there is a unique solution to y′ = y1/3 that passes
through (1, 1).

By guessing that the solution would look like the ones given in part (b) and doing some
reverse engineering to solve for t0, we find that the solution is

y =

{
0, if 0 ≤ t < −1/2,

[2
3
(t+ 1

2
)]3/2, if t ≥ −1/2.

In particular, y(0) 6= 0, so there is no solution to the initial value problem that passes
through (1, 1).

(d) Find the solution to the initial value problem that passes through (2, 1).

Solution:

Since (2, 1) does not lie on the t-axis, there is a unique solution to y′ = y1/3 that passes
through (2, 1).

Using the condition y(2) = 1 to solve for t0 in part (b), we find that t0 = 1/2, so the
function

y =

{
0, if 0 ≤ t < 1/2,

[2
3
(t− 1

2
)]3/2, if t ≥ 1/2.

is the unique solution to the initial value problem that passes through (2, 1).
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(e) Consider all possible solutions of the given initial value problem. Determine the set
of values that these solutions have at t = 2.

Solution:

By the same reasoning as in parts (c) and (d), a solution y(t) to the initial value problem
has to be of the form given in part (b).

This means that y(2) can take any value±[2
3
(2−t0)]3/2 for any choice of t0 ≥ 0. Therefore

y(2) is in the range |y(2)| ≤ (4/3)3/2 ≈ 1.54.

3. Suppose that a given population can be divided into two parts: those who have a given
disease and can infect others, and those who do not have it but are susceptible. Let x be
the proportion of susceptible individuals and y the proportion of infectious individuals;
then x + y = 1. Assume that the disease spreads by contact between sick and well
members of the population and that the rate of spread dy/dt is proportional to the
number of such contacts. Further, assume that members of both groups move about
freely among each other, so the number of contacts is proportional to the product of x
and y. Since x = 1− y, we obtain the initial value problem

dy/dt = αy(1− y), y(0) = y0,

where α is a positive proportionality factor, and y0 is the initial proportion of infectious
individuals.

(a) Find the equilibrium points for the differential equation and determine whether each
is asymptotically stable, semistable, or unstable.

Solution:

y′ = αy(1− y) is a separable, autonomous, first-order, non-linear differential equation.

The equilibrium points are at y = 0, 1.

Since f(y) = αy(1 − y) is positive when 0 < y < 1, y = 0 is unstable while y = 1 is
asymptotically stable.

(b) Solve the initial value problem and verify that the conclusions you reach in part (a)
are correct. Show that y(t) → 1 as t → ∞, which means that ultimately the disease
spreads through the entire population.

Solution:

Rearrange the differential equation:

1

y(1− y)
dy = α dt.

Rewrite the fraction on the left-hand side in partial fractions:

1

y
+

1

1− y
dy = α dt.
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Integrate both sides:

ln |y| − ln |1− y| = αt+ C =⇒ ln

∣∣∣∣ y

1− y

∣∣∣∣ = αt+ C =⇒ y

1− y
= Ceαt.

Note that we could remove the absolute value signs since
y

1− y
is positive in the range

that we care about.

The initial condition y(0) = y0 gives C =
y0

1− y0
.

Rearrange to get the solution y =
Ceαt

1 + Ceαt
.

Thus we see that y → 1 as t→∞, independent of the value of y0 (as long as it is in the
range (0, 1]).

4. Some diseases (such as typhoid fever) are spread largely by carriers, individuals who
can transmit the disease but who exhibit no overt symptoms. Let x and y denote the
proportions of susceptibles and carriers, respectively, in the population. Suppose that
carriers are identified and removed from the population at a rate β, so

dy/dt = −βy. (1)

Suppose also that the disease spreads at a rate proportional to the product of x and y;
thus

dx/dt = −αxy. (2)

(a) Determine y at any time t by solving Eq. (1) subject to the initial condition y(0) = y0.

Solution:

The solution is y = y0e
−βt. Note that y → 0 as t → ∞, so the proportion of carriers

vanishes over time.

(b) Use the result of part (a) to find x at any time t by solving Eq. (2) subject to the
initial condition x(0) = x0.

Solution:

Part (a) turns Eq. (2) into
dx

dt
= −αxy0e−βt.∫

1

x
dx = −αy0

∫
e−βt dt =⇒ lnx =

αy0
β
e−βt + C.

The initial condition x(0) = x0 gives C = lnx0 −
αy0
β
, so the solution is

x = x0e
αy0(e−βt−1)/β.
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(c) Find the proportion of the population that escapes the epidemic by finding the
limiting value of x as t→∞.
Solution:

As t→∞, the proportion x of susceptibles goes to x0e
−αy0/β.

Summing up, over the long term, the proportion y of carriers vanishes while the propor-
tion x of susceptibles goes to x0e

−αy0/β, so this is the proportion population that escapes
the epidemic.

5. Consider the differential equation

3y2 − 4x(y3 + 1) + xy(2− 3xy)y′ = 0.

Is it exact? If not, does it have an integrating factor? Even better, does it have an
integrating factor that is a function of x or y alone?

Solution:

The differential equation is not exact: M = 3y2 − 4x(y3 + 1) =⇒ My = 6y − 12xy2,
while N = xy(2− 3xy) =⇒ Nx = 2y − 6xy2. Since My 6= Nx, the differential equation
is not exact.

Now we find an integrating factor.

My −Nx = 6y − 12xy2 − 2y + 6xy2 = 2y(2 − 3xy) =⇒ My −Nx

N
=

2y(2− 3xy)

xy(2− 3xy)
=

2

x
is a function of x alone.

So we have an integrating factor µ(x) which is a function of x alone, and which satisfies
dµ

dx
=
My −Nx

N
µ =

2

x
µ.

We can solve this separable first-order linear differential equation and choose for instance
the integrating factor µ = x2. (µ = −x2 also works.)

6. Consider the differential equation

(y − 3x2 + 4) + (x+ 4y3 − 2y)
dy

dx
= 0.

(a) Is the above differential equation exact?

Solution:

M = y − 3x2 + 4 =⇒ My = 1.

N = x+ 4y3 − 2y =⇒ Nx = 1.

My = Nx =⇒ exact.
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(b) Find the solution of the above differential equation.

Answer: yx− x3 + 4x+ y4 − y2 = c

Solution:

We want to find ψ(x, y) such that ψx = y − 3x2 + 4 and ψy = x+ 4y3 − 2y.

The first condition ψx = y−3x2+4 implies ψ(x, y) =
∫
y−3x2+4 dx = xy−x3+4x+h(y).

This also gives ψy = x+ h′(y), which we will now use to find h(y).

The second condition ψy = x + 4y3 − 2y implies ψy = x + h′(y) = x + 4y3 − 2y =⇒
h′(y) = 4y3 − 2y =⇒ h(y) = y4 − y2.
Therefore ψ(x, y) = xy− x3 + 4x+ y4− y2, and the solution to the differential equation
is xy − x3 + 4x+ y4 − y2 = c for any constant c.


