Math 20580	Name:				
Midterm 1	Instructor:				
February 16, 2023	Section:				
Calculators are NOT allowed. Do not remove this answer page – you will return the whole					
exam. You will be allowed 75	minutes to do the test. You may leave earlier if you are finished.				

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

Multiple Choice.

9.			
10.			
11.			
12.			

Total.

Part I: Multiple choice questions (7 points each)

1. For the matrix

$$A = \begin{bmatrix} 2 & 1\\ 5 & 2 \end{bmatrix}$$

determine the sum $A^{-1} + A^T$ between the inverse of A and the transpose of A.

(a)
$$\begin{bmatrix} 4 & 4 \\ -4 & 4 \end{bmatrix}$$
 (b) $\begin{bmatrix} -3 & -8 \\ 8 & 21 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 5 \\ 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 6 \\ 6 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

2. Let $\vec{v}_1, \vec{v}_2, \vec{v}_3$ denote (in this order) the columns of the matrix

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 4 & 5 \end{bmatrix}.$$

Which of the following sets of vectors are linearly independent? (I) $\{\vec{v}_1, \vec{v}_2\}$ (II) $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ (III) $\{\vec{v}_2\}$ (IV) $\{\vec{v}_2, \vec{v}_3\}$ (a) III only (b) I and III only (c) I and II only (d) II and IV only (e) III and IV only 3. Consider linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $S: \mathbb{R}^3 \to \mathbb{R}^2$ with standard matrices

$$[T] = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \qquad [S] = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

What is the matrix of the composition $T \circ S$?

(a)
$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 1 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

- 4. Let $M_{2,3}$ denote the vector space of 2×3 matrices. Which among the following subsets of $M_{2,3}$ is a subspace?
 - I. The set of all 2×3 matrices whose columns sum to $\begin{bmatrix} 1\\ 0 \end{bmatrix}$.

II. The set of all 2×3 matrices whose entries are all non-negative.

III.
$$\left\{ \begin{bmatrix} t & t+s & s \\ 0 & s+2t & 0 \end{bmatrix} \middle| t, s \in \mathbb{R} \right\}$$

IV.
$$\left\{ \begin{bmatrix} t & 1 & 0 \\ 0 & s & 1 \end{bmatrix} \middle| t, s \in \mathbb{R} \right\}$$

(a) III and IV only (b) IV only (c) I, III, and IV only
(d) II and IV only (e) III only

5. Consider the linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^3$ defined by

$$T(\vec{x}) = \begin{bmatrix} 2x_1 + x_2 + 3x_3 + 2x_4 \\ x_1 + 2x_2 + x_3 \\ x_2 - x_3 + x_4 \end{bmatrix}$$

Determine the standard matrix of T.

(a)
$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 2 \\ 3 & 3 & -3 \\ 4 & 0 & 4 \end{bmatrix}$$
 (b) $\begin{bmatrix} 8 \\ 4 \\ 1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 1 & 3 & 2 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ x_1 & x_2 & x_3 & 0 \\ 0 & x_2 & -x_3 & x_4 \end{bmatrix}$

(e) none of the above

6. Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} 1\\1\\t \end{bmatrix}$$

For which value of t does the vector \vec{v}_3 belong to $\text{Span}(\vec{v}_1, \vec{v}_2)$?

(a) t = 2 only (b) all $t \ge 0$ (c) t = 1 and t = -1 (d) t = 0 only (e) t = 1 only

7. Which of the following sets is a basis of \mathbb{R}^2 ?

$$(I) \left\{ \begin{bmatrix} 4\\2 \end{bmatrix}, \begin{bmatrix} 8\\4 \end{bmatrix} \right\} \qquad (II) \left\{ \begin{bmatrix} 0\\2 \end{bmatrix}, \begin{bmatrix} 2\\0 \end{bmatrix} \right\} \qquad (III) \left\{ \begin{bmatrix} 2\\4 \end{bmatrix}, \begin{bmatrix} 6\\8 \end{bmatrix} \right\} \qquad (IV) \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\}$$

(a) I, II, III only (b) II, III, IV only

(c) I, II only

(d) III and IV only (e) I, III, IV only

8. Let A be a 2×6 matrix. Describe all the possible values for the nullity of A (the dimension of the null space of A)?

(a) 0,1,2,3 (b) 2,3,4 (c) 4,5,6 (d) 2,4,6 (e) 1,2,3,4,5.

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the linear system

$$\begin{cases} x_1 + x_3 = 1\\ 2x_1 + 2x_3 + x_4 = 1\\ x_1 + x_2 + 2x_3 = 2\\ 2x_2 + x_3 + x_4 = 1 \end{cases}$$

(a) Write down the augmented matrix of the system.

(b) Determine the solution set of the linear system.

10. Find the inverse of the matrix

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

11. Consider the matrix

$$A = \begin{bmatrix} 0 & 2 & 0 & 0 \\ 1 & 4 & 2 & 1 \\ 0 & 0 & 3 & 1 \end{bmatrix}$$

(a) Find a basis \mathcal{B} for Col(A) (the column space of A).

(b) Find a basis \mathcal{R} for $\operatorname{Row}(A)$ (the row space of A).

(c) For the basis \mathcal{B} found in (a), determine the coordinate vector $[\vec{v}]_{\mathcal{B}}$ if $\vec{v} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$.

12. Consider the bases \mathcal{B} and \mathcal{C} of \mathbb{R}^3 given by

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}, \qquad \mathcal{C} = \left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix} \right\}.$$

(a) Find the change of coordinate matrix $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ from \mathcal{C} to \mathcal{B} (recall that $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ is the matrix such that $[\vec{x}]_{\mathcal{B}} = \underset{\mathcal{B}\leftarrow\mathcal{C}}{P} \cdot [\vec{x}]_{\mathcal{C}}$ for all vectors \vec{x} in \mathbb{R}^3).

(b) If \vec{v} is a vector in \mathbb{R}^3 with $[\vec{v}]_{\mathcal{C}} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, determine $[\vec{v}]_{\mathcal{B}}$ and \vec{v} .