Math 20580
Midterm 1
February 16, 2023
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.
There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

$$
\begin{aligned}
& \text { 1. } a, b \text { c } \quad \text { d } \quad \text { e }
\end{aligned}
$$

> 3. a, b c x d
> 4. a b c d e
> 5. a b c c d
> 6. a b $\mathrm{c} \sqrt{\mathrm{d}}, \mathrm{e}$
> 7. a b c d e
> 8. a, b d e

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. For the matrix

$$
A=\left[\begin{array}{ll}
2 & 1 \\
5 & 2
\end{array}\right]
$$

determine the sum $A^{-1}+A^{T}$ between the inverse of A and the transpose of A.
(a) $\left[\begin{array}{cc}4 & 4 \\ -4 & 4\end{array}\right]$
(b) $\left[\begin{array}{cc}-3 & -8 \\ 8 & 21\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 5 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{ll}0 & 6 \\ 6 & 0\end{array}\right]$
(e) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. Let $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ denote (in this order) the columns of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 5 \\
2 & 4 & 5
\end{array}\right]
$$

Which of the following sets of vectors are linearly independent?
(I) $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$
(II) $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$
(III) $\left\{\vec{v}_{2}\right\}$
(IV) $\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$
(a) III only
(b) I and III only
(c) I and II only
(d) II and IV only
(e) III and IV only
3. Consider linear transformations $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ and $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ with standard matrices

$$
[T]=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right] \quad[S]=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

What is the matrix of the composition $T \circ S$?
(a) $\left[\begin{array}{ll}1 & 1 \\ 2 & 2 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
(d) $\left[\begin{array}{lll}0 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
4. Let $M_{2,3}$ denote the vector space of 2×3 matrices. Which among the following subsets of $M_{2,3}$ is a subspace?
I. The set of all 2×3 matrices whose columns sum to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
II. The set of all 2×3 matrices whose entries are all non-negative.
III. $\left\{\left.\left[\begin{array}{ccc}t & t+s & s \\ 0 & s+2 t & 0\end{array}\right] \right\rvert\, t, s \in \mathbb{R}\right\}$
IV. $\left\{\left.\left[\begin{array}{lll}t & 1 & 0 \\ 0 & s & 1\end{array}\right] \right\rvert\, t, s \in \mathbb{R}\right\}$
(a) III and IV only
(b) IV only
(c) I, III, and IV only
(d) II and IV only
(e) III only
5. Consider the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ defined by

$$
T(\vec{x})=\left[\begin{array}{c}
2 x_{1}+x_{2}+3 x_{3}+2 x_{4} \\
x_{1}+2 x_{2}+x_{3} \\
x_{2}-x_{3}+x_{4}
\end{array}\right]
$$

Determine the standard matrix of T.
(a) $\left[\begin{array}{ccc}1 & 1 & 0 \\ 2 & 2 & 2 \\ 3 & 3 & -3 \\ 4 & 0 & 4\end{array}\right]$
(b) $\left[\begin{array}{l}8 \\ 4 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{cccc}2 & 1 & 3 & 2 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 1\end{array}\right]$
(d) $\left[\begin{array}{cccc}x_{1} & x_{2} & x_{3} & x_{4} \\ x_{1} & x_{2} & x_{3} & 0 \\ 0 & x_{2} & -x_{3} & x_{4}\end{array}\right]$
(e) none of the above
6. Consider the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
t
\end{array}\right]
$$

For which value of t does the vector \vec{v}_{3} belong to $\operatorname{Span}\left(\vec{v}_{1}, \vec{v}_{2}\right)$?
(a) $t=2$ only
(b) all $t \geq 0$
(c) $t=1$ and $t=-1$
(d) $t=0$ only
(e) $t=1$ only
7. Which of the following sets is a basis of \mathbb{R}^{2} ?
(I) $\left\{\left[\begin{array}{l}4 \\ 2\end{array}\right],\left[\begin{array}{l}8 \\ 4\end{array}\right]\right\}$
(II) $\left\{\left[\begin{array}{l}0 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 0\end{array}\right]\right\}$
(III) $\left\{\left[\begin{array}{l}2 \\ 4\end{array}\right],\left[\begin{array}{l}6 \\ 8\end{array}\right]\right\}$
(IV) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]\right\}$
(a) I, II, III only
(b) II, III, IV only
(c) I, II only
(d) III and IV only
(e) I, III, IV only
8. Let A be a 2×6 matrix. Describe all the possible values for the nullity of A (the dimension of the null space of A)?
(a) 0,1,2,3
(b) $2,3,4$
(c) $4,5,6$
(d) $2,4,6$
(e) $1,2,3,4,5$.

Part II: Partial credit questions (11 points each). Show your work.
9. Consider the linear system

$$
\left\{\begin{aligned}
x_{1}+x_{3} & =1 \\
2 x_{1}+2 x_{3}+x_{4} & =1 \\
x_{1}+x_{2}+2 x_{3} & =2 \\
2 x_{2}+x_{3}+x_{4} & =1
\end{aligned}\right.
$$

(a) Write down the augmented matrix of the system.
(b) Determine the solution set of the linear system.
10. Find the inverse of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

11. Consider the matrix

$$
A=\left[\begin{array}{llll}
0 & 2 & 0 & 0 \\
1 & 4 & 2 & 1 \\
0 & 0 & 3 & 1
\end{array}\right]
$$

(a) Find a basis \mathcal{B} for $\operatorname{Col}(A)$ (the column space of A).
(b) Find a basis \mathcal{R} for $\operatorname{Row}(A)$ (the row space of A).
(c) For the basis \mathcal{B} found in (a), determine the coordinate vector $[\vec{v}]_{\mathcal{B}}$ if $\vec{v}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.
12. Consider the bases \mathcal{B} and \mathcal{C} of \mathbb{R}^{3} given by

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}, \quad \mathcal{C}=\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]\right\} .
$$

(a) Find the change of coordinate matrix $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$ from \mathcal{C} to \mathcal{B} (recall that $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$ is the matrix such that $[\vec{x}]_{\mathcal{B}}=\underset{\mathcal{B} \leftarrow \mathcal{C}}{P} \cdot[\vec{x}]_{\mathcal{C}}$ for all vectors \vec{x} in \mathbb{R}^{3}).
(b) If \vec{v} is a vector in \mathbb{R}^{3} with $[\vec{v}]_{\mathcal{C}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, determine $[\vec{v}]_{\mathcal{B}}$ and \vec{v}.

