Math 20580
Midterm 2
March 9, 2023
Name: \qquad
Instructor: \qquad
Section:
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.
There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
2. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
3. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$
4. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
5. a b $\mathrm{c} \sqrt{\mathrm{d}}$
6. a, b d d
7. a b b d e
8. a b c d e
\qquad

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Suppose that A and B are 3×3 matrices such that $\operatorname{det}(A)=3$ and $\operatorname{det}(B)=-2$. What is $\operatorname{det}\left(3 B^{T} A^{-1} B\right)$?
(a) -36
(b) 0
(c) 4
(d) 36
(e) none of the above
2. What are the eigenvalues of the matrix $\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right]$?
(a) $-4,0$
(b) $-3,-1$
(c) $-2,1$
(d) 1,2
(e) none of the above
3. The vector $\left[\begin{array}{c}-2 \\ 2 \\ -2\end{array}\right]$ is an eigenvector of the matrix $\left[\begin{array}{ccc}0 & -1 & -3 \\ 3 & -1 & -2 \\ 2 & 3 & -1\end{array}\right]$. What is the corresponding eigenvalue?
(a) -4
(b) -2
(c) 0
(d) 2
(e) 4
4. Suppose that $T: \mathcal{P}_{2} \rightarrow M_{2,2}$ is a linear transformation. Which of the following statements are always true? (Recall that $M_{2,2}$ is the vector space of 2×2 matrices, and \mathcal{P}_{2} is the vector space of polynomials of degree at most 2 . Also recall that $\operatorname{rank}(T)$ is the dimension of the range of T, and nullity (T) is the dimension of the kernel of T.)
I. $\operatorname{rank}(T)+\operatorname{nullity}(T)=4$.
II. T is one-to-one if and only if nullity $(T)=0$.
III. The range of T is a subspace of \mathcal{P}_{2}.
(a) I only
(b) II only
(c) I, III only
(d) II, III only
(e) none of them
5. Recall that $M_{2,2}$ is the vector space of 2×2 matrices. Consider the linear transformation

$$
T: M_{2,2} \rightarrow M_{2,2}, \quad T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a+2 b+c & b-c+d \\
-a-3 c+2 d & a+3 b+d
\end{array}\right] .
$$

Which of the following vectors is in the kernel of T ?
(a) $\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}3 & -1 \\ -1 & 0\end{array}\right]$
(d) $\left[\begin{array}{cc}-3 & 1 \\ 1 & -2\end{array}\right]$
(e) $\left[\begin{array}{cc}1 & 0 \\ -1 & 0\end{array}\right]$
6. Which of the following statements are always true for an $n \times n$ matrix A ?
I. If A is invertible, then 0 is not an eigenvalue of A.
II. If \mathbb{R}^{n} has a basis of eigenvectors of A, then A is diagonalizable.
III. Every matrix similar to A has the same characteristic polynomial as A.
(a) I only
(b) I, II only
(c) I, III only
(d) II, III only
(e) I, II, III
7. Consider the linear system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}=3 \\
x_{1}-x_{2}=2
\end{array}\right.
$$

According to Cramer's rule, what is x_{2} ?
(a) $\frac{\left|\begin{array}{ll}1 & 3 \\ 1 & 2\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|}$
(b) $\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|$
(c) $\frac{\left|\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|}$
(d) $\frac{\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|}$
(e) $\frac{\left|\begin{array}{ll}3 & 3 \\ 2 & 2\end{array}\right|}{\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|}$
8. Recall that $M_{2,2}$ is the vector space of 2×2 matrices. Consider the function

$$
T: M_{2,2} \rightarrow \mathbb{R}^{2}, \quad T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{l}
a^{2}+b^{2} \\
c^{2}+d^{2}
\end{array}\right]
$$

Which of the following statements are true?
I. T is a linear transformation.
II. T is not a linear transformation because $T(\overrightarrow{0}) \neq \overrightarrow{0}$.
III. T is not a linear transformation because there exist A in $M_{2,2}$ and a scalar k such that $T(k A) \neq k T(A)$.
(a) none of them
(b) I only
(c) II only
(d) III only
(e) II, III only

Part II: Partial credit questions (11 points each). Show your work.
9. Consider the bases

$$
\mathcal{B}=\left\{1-x, x-x^{2}, x^{2}\right\} \quad \text { and } \quad \mathcal{C}=\left\{1-x+x^{2}, 1+3 x, 2-x-2 x^{2}\right\}
$$

of \mathcal{P}_{2} (the vector space of polynomials of degree at most 2 in the variable x).
(a) Find the change-of-basis matrix $\underset{\mathcal{B} \leftarrow \mathcal{C}}{P}$ from \mathcal{C} to \mathcal{B}.
(b) Suppose that $p(x)$ is a vector in \mathcal{P}_{2} with $[p(x)]_{\mathcal{C}}=\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]$. What is $[p(x)]_{\mathcal{B}}$?
10. Recall that \mathcal{P}_{2} is the vector space of polynomials of degree at most 2 in the variable x. Consider the linear transformation

$$
T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}, \quad T(p(x))=p(x)-(1+x) p^{\prime}(x)
$$

where $p^{\prime}(x)$ is the derivative of $p(x)$.
(a) Verify that T can be expressed more explicitly as

$$
T\left(a+b x+c x^{2}\right)=(a-b)-2 c x-c x^{2} .
$$

(b) Let $\mathcal{E}=\left\{1, x, x^{2}\right\}$ be the standard basis of \mathcal{P}_{2}. Find the matrix $[T]_{\mathcal{E}}=\underset{\mathcal{E} \leftarrow \mathcal{E}}{[T]_{\mathcal{E}} \text { of } T}$ with respect to \mathcal{E}.
(c) Find a basis for the kernel of T and a basis for the range of T.
11. Consider the matrix

$$
A=\left[\begin{array}{ccc}
1 & t & -1 \\
0 & 3 & t \\
2 & 1 & -2
\end{array}\right]
$$

where t is some real number.
(a) Calculate the determinant of A. (Your answer may depend on t.)
(b) Find all values of t such that A is invertible.
12. Let A be the matrix

$$
A=\left[\begin{array}{ccc}
2 & -1 & 2 \\
2 & -1 & 4 \\
-1 & 1 & -1
\end{array}\right]
$$

The characteristic polynomial of A is $\operatorname{det}(A-\lambda I)=(1-\lambda)^{2}(-2-\lambda)$.
(a) What are the eigenvalues of A ?
(b) Diagonalize A, that is, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.

