Math 20580
Final Exam
May 8, 2023
Calculators are NOT allowed. You will be allowed 2 hours to do the test.
There are 20 multiple choice questions worth 7 points each. You will receive 10 points for following the instructions. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a b c d e
2. a b c d e
3. $a \operatorname{b}$ c d, e
4. a b c d e
5. a b b d e
6. a b b c $\begin{array}{llll}\text { d } & \mathrm{e}\end{array}$

7. a b c d e
8. a b c d e
9. a b e d e
10. a b e d e
11. a b c d e
12. a b c d e
13. a b e d e
14. a b c d e
15. a b c d e
16. a b c d e
17. a b c d e
18. a b c d e
19. a b c d e
20. Consider the bases $\mathcal{B}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}-3 \\ 4\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 3\end{array}\right]\right\}$ for \mathbb{R}^{2}. Find the change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}}$ from \mathcal{B} to \mathcal{C}.
(a) $\left[\begin{array}{ll}2 & 1 \\ 5 & 8\end{array}\right]$
(b) $\left[\begin{array}{cc}2 & -3 \\ 2 & 3\end{array}\right]$
(c) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{cc}8 & -1 \\ -5 & 2\end{array}\right]$
(e) none of the above
21. Which number is not an eigenvalue of the following matrix?
$\left[\begin{array}{rrrr}1 & 0 & 0 & 6 \\ 0 & 4 & 0 & 0 \\ 0 & -1 & 1 & 3 \\ 0 & 1 & 2 & -4\end{array}\right]$
(a) -3
(b) 4
(c) 1
(d) 2
(e) -5
22. If A is a 4×6 matrix of rank 2 , what is the dimension of the orthogonal complement of the row space of A^{T} ?
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5
23. Consider the differential equation

$$
\left(3 x \sin y+2 e^{y}\right) d x+\left(x^{2} \cos y+x e^{y}\right) d y=0 .
$$

Find an integrating factor μ depending only on x that makes the equation exact.
(a) $\mu(x)=e^{x}$
(b) $\mu(x)=\sin x$
(c) $\mu(x)=x^{2}$
(d) $\mu(x)=\cos x$
(e) $\mu(x)=x$
5. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
3 x+2 y \\
3 x+8 y
\end{array}\right]
$$

Find a basis \mathcal{B} of \mathbb{R}^{2} such that the matrix of T with respect to \mathcal{B} (usually denoted by $[T]_{\mathcal{B}}$ or $\underset{\mathcal{B} \leftarrow \mathcal{B}}{T}$) is a diagonal matrix.
(a) $\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{l}5 \\ 1\end{array}\right],\left[\begin{array}{r}-3 \\ 1\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{r}5 \\ -3\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
(e) $\left\{\left[\begin{array}{l}0 \\ 2\end{array}\right],\left[\begin{array}{l}4 \\ 0\end{array}\right]\right\}$
6. Which of the following sets of vectors is linearly independent?
(a) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 3 \\ 2 \\ 0\end{array}\right]\right\}$
(e) none of these
7. Let \mathbb{P}_{2} denote the vector space of polynomials in x of degree at most 2 , which has the basis $\mathcal{B}=\left\{1, x, x^{2}\right\}$. Consider the linear transformation

$$
T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}, \quad T(p(x))=x^{2} p^{\prime \prime}(x)+x p^{\prime}(x)+p(x)
$$

Compute the matrix of T with respect to \mathcal{B} (denoted $[T]_{\mathcal{B}}$ or $\underset{\mathcal{B} \leftarrow \mathcal{B}}{T}$).
(a) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 2 & 0 \\ 5 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & -1 \\ 5 & -1 & 0\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 5 \\ 0 & 0 & 0\end{array}\right]$
(e) $\left[\begin{array}{lll}1 & 3 & 1 \\ 3 & 2 & 5 \\ 1 & 5 & 0\end{array}\right]$
8. Let $\mathcal{B}=\left\{1-t, 2+t^{2}, t-t^{2}\right\}$ be a basis for the vector space \mathbb{P}_{2} of all polynomials in t of degree at most 2 . Find the coordinate vector of $p=5 t-2 t^{2}$ with respect to \mathcal{B}.
(a) $[p]_{\mathcal{B}}=\left[\begin{array}{c}0 \\ 5 \\ -2\end{array}\right]$
(b) $[p]_{\mathcal{B}}=\left[\begin{array}{c}-2 \\ 1 \\ 3\end{array}\right]$
(c) $[p]_{\mathcal{B}}=\left[\begin{array}{c}t-2 \\ 1 \\ 2\end{array}\right]$
(d) $[p]_{\mathcal{B}}=\left[\begin{array}{c}5 \\ -2\end{array}\right]$
(e) $[p]_{\mathcal{B}}=\left[\begin{array}{c}1 \\ -1 / 2 \\ 2\end{array}\right]$
9. Let

$$
A=\left[\begin{array}{rrrrr}
1 & -1 & 2 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

If

$$
\begin{aligned}
& r=\text { dimension of the column space of } A, \\
& s=\text { dimension of the null space of } A, \\
& t=\text { dimension of the row space of } A, \text { then }
\end{aligned}
$$

(a) $(r, s, t)=(3,2,3)$
(b) $(r, s, t)=(2,3,3)$
(c) $(r, s, t)=(2,3,2)$
(d) $(r, s, t)=(5,0,1)$
(e) $(r, s, t)=(3,2,4)$
10. The inverse of the matrix $\left[\begin{array}{ccc}-3 & -1 & 2 \\ 4 & 1 & -2 \\ 2 & 0 & -1\end{array}\right]$ is
(a) $\left[\begin{array}{ccc}-3 & 4 & 2 \\ -1 & 1 & 0 \\ 2 & -2 & -1\end{array}\right]$
(b) $\left[\begin{array}{ccc}-1 & -1 & 0 \\ 0 & -1 & 2 \\ -2 & -2 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & -2 \\ 2 & 2 & -1\end{array}\right]$
(d) $\left[\begin{array}{ccc}1 & 0 & 2 \\ 1 & 1 & 2 \\ 0 & -2 & -1\end{array}\right]$
(e) $\left[\begin{array}{ccc}-2 & -1 & 0 \\ 4 & 0 & 2 \\ 3 & 1 & -1\end{array}\right]$
11. Find the solution of the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}-5 y^{\prime}-6 y=0 \\
y(0)=0, y^{\prime}(0)=1
\end{array}\right.
$$

(a) $\frac{1}{5}\left(e^{2 t}-e^{3 t}\right)$
(b) $e^{5 t}-e^{6 t}$
(c) $\frac{1}{7}\left(e^{6 t}-e^{-t}\right)$
(d) $\frac{-1}{5}\left(e^{-2 t}-e^{-3 t}\right)$
(e) $\frac{-1}{7}\left(e^{t}-e^{-6 t}\right)$
12. Compute the Wronskian $W\left(y_{1}, y_{2}\right)$, where

$$
y_{1}(t)=t \cos (t), \quad y_{2}(t)=t \sin (t)
$$

(a) 0
(b) t^{2}
(c) $t \sin (2 t)$
(d) $\cos (2 t)$
(e) $2 t+1$
13. Consider the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=e^{2 x}$. By the method of undetermined coefficients, a particular solution will have the form
(a) $A x e^{2 x}$
(b) $\left(A x^{2}+B\right) e^{2 x}$
(c) $2 e^{2 x}$
(d) $A e^{x}+B e^{2 x}$
(e) $A e^{2 x}$
14. Find the solution of the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime}+2 y=3 e^{x} \\
y(1)=0
\end{array}\right.
$$

(a) $(x-1) e^{x}$
(b) $e^{x}-e^{3-2 x}$
(c) x^{2}
(d) e^{x}
(e) $\left(3 e^{x}-3\right) / 2$
15. If x is a real number, what are the possible values for the rank of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & x \\
1 & x & 0 \\
x & 0 & 0
\end{array}\right] ?
$$

(a) 1,2
(b) 0
(c) $0,1,2,3$
(d) $0,1,2$
(e) 2,3
16. Consider the subspace W of \mathbb{R}^{3} with basis $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ and the vector $\mathbf{v}=\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$.

Which of the following is the orthogonal projection of \mathbf{v} onto the subspace W ?
(a) $\left[\begin{array}{l}1 \\ 3 \\ 5\end{array}\right]$
(b) $\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$
(c) $\left[\begin{array}{l}4 \\ 2 \\ 3\end{array}\right]$
(d) $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{c}-1 \\ -1 \\ 2\end{array}\right]$
17. Find a least-squares solution of the equation $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 1 \\
0 & 2
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]
$$

(a) $\left[\begin{array}{l}5 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{c}\frac{-15}{21} \\ \frac{5}{21}\end{array}\right]$
(c) $\left[\begin{array}{l}\frac{2}{5} \\ \frac{1}{2}\end{array}\right]$
(d) $\left[\begin{array}{c}\frac{21}{25} \\ \frac{-10}{25}\end{array}\right]$
(e) $\left[\begin{array}{c}\frac{25}{21} \\ \frac{-10}{21}\end{array}\right]$
18. The function $y_{1}(x)=x^{2}$ is a solution of the differential equation

$$
x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0, x>0 .
$$

Using the method of reduction of order, find a second solution $y_{2}(x)$ for this equation.
(a) $1 / x^{3}$
(b) $e^{3 x}$
(c) $x \ln (x)$
(d) $x^{2}+2 x-6$
(e) $x^{2} e^{x}$
19. Given that $y_{1}=t$ and $y_{2}=t^{-1}$ form a fundamental set of solutions for the differential equation $y^{\prime \prime}+t^{-1} y^{\prime}-t^{-2} y=0$, the variation of parameters method gives a particular solution Y to the corresponding nonhomogeneous equation

$$
y^{\prime \prime}+t^{-1} y^{\prime}-t^{-2} y=t^{-1}, \quad t>0
$$

of the form

$$
Y=t u_{1}(t)+t^{-1} u_{2}(t)
$$

Which of the following functions can be $u_{1}(t)$?
(a) $u_{1}(t)=\frac{1}{2} \ln t$
(b) $u_{1}(t)=t \ln t$
(c) $u_{1}(t)=-\frac{1}{2} t^{2}$
(d) $u_{1}(t)=t^{2} \ln t$
(e) $u_{1}(t)=2 t+5 t^{-1}$
20. Which formula describes implicitly the solution of the initial value problem

$$
\frac{d y}{d x}=\frac{x+1}{x \cdot\left(y^{2}+1\right)}, \quad y(1)=0, \quad x>0 .
$$

(a) $3 x+\ln x-3 y=3$
(b) $y^{3}+3 y=3 x+3 \ln x-3$
(c) $x-\ln x-y^{3}=1$
(d) $y^{3}+y=3 x-3$
(e) $-y^{3}+3 y=3 x+3 \ln x$

