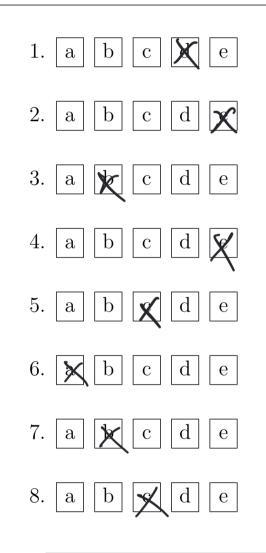
Math	20580	Name:
Midte	rm 1	Instructor:
Februa	ary 16, 2023	Section:
Calcula	tors are NOT allo	wed. Do not remove this answer page – you will return the whole
exam.	You will be allowed	d 75 minutes to do the test. You may leave earlier if you are finished.
There a	are 8 multiple choi	ce questions worth 7 points each and 4 partial credit questions each
worth 1	1 points. Record	your answers by placing an \times through one letter for each problem on

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":



Multiple Choice.

this answer sheet.

Total.

Part I: Multiple choice questions (7 points each)

1. For the matrix

$$A = \begin{bmatrix} 2 & 1\\ 5 & 2 \end{bmatrix}$$

determine the sum $A^{-1} + A^T$ between the inverse of A and the transpose of A. (a) $\begin{bmatrix} 4 & 4 \\ -4 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} -3 & -8 \\ 8 & 21 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 5 \\ 1 & 0 \end{bmatrix}$ $\bigcirc \begin{bmatrix} 0 & 6 \\ 6 & 0 \end{bmatrix}$ (e) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $A^{-1} = \frac{1}{2 \cdot 2 - 1 \cdot 5} \begin{bmatrix} 2 & -1 \\ -5 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 5 & -2 \end{bmatrix}$ $A^{-1} = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$ $A^{-1} = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$

2. Let $\vec{v_1}, \vec{v_2}, \vec{v_3}$ denote (in this order) the columns of the matrix

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 4 & 5 \end{bmatrix}.$$

Which of the following sets of vectors are linearly independent? (I) $\{\vec{v}_1, \vec{v}_2\}$ (II) $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ (III) $\{\vec{v}_2\}$ (IV) $\{\vec{v}_2, \vec{v}_3\}$ (a) III only (b) I and III only (c) I and II only (d) II and IV only (i) III and IV only

$$\vec{v_2} = 2\vec{v_1}$$
 So I, I dependent
 $\vec{v_2} \neq \vec{o}$ So III independent
 $\vec{v_2} \neq \vec{o}$ not scala multiples, so IV independent

3. Consider linear transformations $T: \mathbb{R}^2 \to \mathbb{R}^3$ and $S: \mathbb{R}^3 \to \mathbb{R}^2$ with standard matrices

$$[T] = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \qquad [S] = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

What is the matrix of the composition $T \circ S$?

$$(a) \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 1 & 1 \end{bmatrix} \quad (b) \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad (c) \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \quad (d) \begin{bmatrix} 0 & 2 & 1 \\ 2 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad (e) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$(e) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- 4. Let $M_{2,3}$ denote the vector space of 2×3 matrices. Which among the following subsets of $M_{2,3}$ is a subspace?
 - I. The set of all 2×3 matrices whose columns sum to $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

II. The set of all 2×3 matrices whose entries are all non-negative.

III. $\left\{ \begin{bmatrix} t & t+s & s \\ 0 & s+2t & 0 \end{bmatrix} | t, s \in \mathbb{R} \right\}$ IV. $\left\{ \begin{bmatrix} t & 1 & 0 \\ 0 & s & 1 \end{bmatrix} | t, s \in \mathbb{R} \right\}$ (a) III and IV only (b) IV only (c) I, III, and IV only (d) II and IV only \bigotimes III only

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ is NOT in } I, IV$$

$$\boxed{I} \text{ is NOT closed under scala multiplication by -1}$$

$$\boxed{MI}: \left\{ t \cdot \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \end{bmatrix} + s \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \right\} = Span \left\{ \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \right\}$$

$$is a subspace !$$

5. Consider the linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^3$ defined by

$$T(\vec{x}) = \begin{bmatrix} 2x_1 + x_2 + 3x_3 + 2x_4 \\ x_1 + 2x_2 + x_3 \\ x_2 - x_3 + x_4 \end{bmatrix}$$

Determine the standard matrix of T.

(a)
$$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 2 \\ 3 & 3 & -3 \\ 4 & 0 & 4 \end{bmatrix}$$
 (b) $\begin{bmatrix} 8 \\ 4 \\ 1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 1 & 3 & 2 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ x_1 & x_2 & x_3 & 0 \\ 0 & x_2 & -x_3 & x_4 \end{bmatrix}$

(e) none of the above

e of the above
$$\|$$

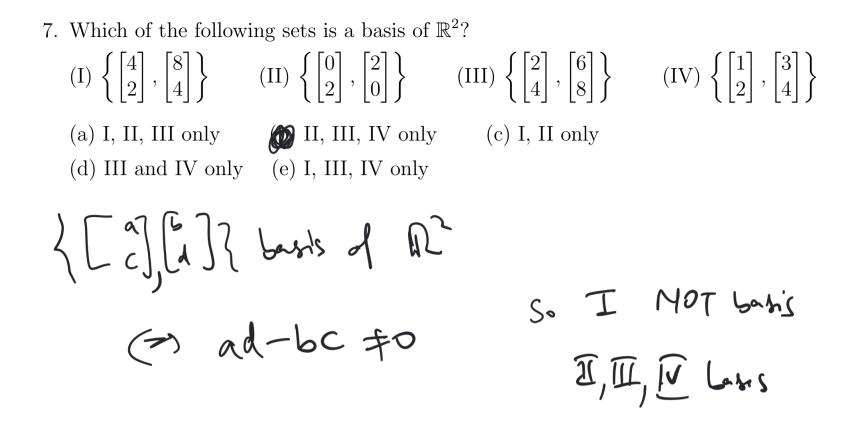
 $T(\vec{e}_1) T(\vec{e}_2) T(\vec{e}_2) T(\vec{e}_3) T(\vec{e}_3)$

6. Consider the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \qquad \vec{v}_2 = \begin{bmatrix} 0\\1\\1 \end{bmatrix} \qquad \vec{v}_3 = \begin{bmatrix} 1\\1\\t \end{bmatrix}$$

For which value of t does the vector \vec{v}_3 belong to $\text{Span}(\vec{v}_1, \vec{v}_2)$?

(i) t = 2 only (b) all $t \ge 0$ (c) t = 1 and t = -1 (d) t = 0 only (e) t = 1 only



8. Let A be a 2×6 matrix. Describe all the possible values for the nullity of A (the dimension of the null space of A)?

(a) 0,1,2,3 (b) 2,3,4 (c) 4,5,6 (d) 2,4,6 (e) 1,2,3,4,5.

Thorefore, nullity A = 6,5 or 4

Part II: Partial credit questions (11 points each). Show your work.

9. Consider the linear system

$$\begin{cases} x_1 + x_3 = 1\\ 2x_1 + 2x_3 + x_4 = 1\\ x_1 + x_2 + 2x_3 = 2\\ 2x_2 + x_3 + x_4 = 1 \end{cases}$$

(a) Write down the augmented matrix of the system.

$$\begin{array}{c}
\left(\begin{array}{c}
0 & 0 & 1 & 0 \\
2 & 0 & 2 & 1 \\
1 & 1 & 2 & 0 \\
0 & 2 & 1 & 1 \\
1 & 1 & 2 & 0 \\
0 & 2 & 1 & 1 \\
\end{array}\right)$$
(b) Determine the solution set of the linear system.
$$\begin{array}{c}
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
\end{array}\right)$$

$$\begin{array}{c}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & -1 & 1 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 & 0 & 0 \\
\end{array}$$

$$\begin{array}{c}
1 & 0 \\
\end{array}$$

10. Find the inverse of the matrix

$$\bigwedge^{\mathbf{X}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 22 & 0 & 0 \\ 1 & 23 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{R_2 - R_2 - R_1} \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & -1 & 1 & 0 \\ R_3 - 3R_3 - R_1 & 0 & 12 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 2 & -1 & 0 \\ 0 & 1 & 0 & -1 & 2 & -1 \\ 0 & 0 & 1 & 0 & -1 & 1 \end{bmatrix}$$

$$T_{3}$$

$$\begin{bmatrix} A^{-1} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$$

11. Consider the matrix

(a) Find a basis \mathcal{B} for Col(A) (the column space of A).

$$\begin{bmatrix} 0 & 4 & 2 & 1 \\ 0 & 0 & 3 & 1 \end{bmatrix} REF pivots in columns 1, 2, 3 \\ B = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} \right\} \\ T \\ columns 1, 2, 3 in A$$

(b) Find a basis \mathcal{R} for $\operatorname{Row}(A)$ (the row space of A).

Non-zono hows in REF (all of them)

$$R=\{[1 \ y \ z1], [0 \ z \ o0], [0 \ 0 \ 31]\}$$

(c) For the basis \mathcal{B} found in (a), determine the coordinate vector $[\vec{v}]_{\mathcal{B}}$ if $\vec{v} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$. Observe that $\vec{v} = \text{last column of } A$ $\mathcal{B} = \text{first three columns of } A$ $\cdots \begin{bmatrix} 0 & 4 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{-n} X_1 = \frac{1}{3}$ $\cdots \begin{bmatrix} 0 & 4 & 2 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{-n} X_2 = 0$ $\rightarrow X_2 = 0$ $\rightarrow X_3 = \frac{1}{3}$ $\overrightarrow{v} = \begin{bmatrix} \sqrt{3} \\ 0 \\ \sqrt{3} \end{bmatrix}$ 12. Consider the bases \mathcal{B} and \mathcal{C} of \mathbb{R}^3 given by

bases
$$\mathcal{B}$$
 and \mathcal{C} of \mathbb{R}^3 given by

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}, \qquad \mathcal{C} = \left\{ \begin{bmatrix} 1\\-1\\-1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} -1\\1\\-1 \end{bmatrix} \right\}.$$

$$\mathcal{F} \quad \mathcal{F} \quad \mathcal{F}$$

(a) Find the change of coordinate matrix $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ from \mathcal{C} to \mathcal{B} (recall that $\underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$ is the matrix such that $[\vec{x}]_{\mathcal{B}} = \underset{\mathcal{B}\leftarrow\mathcal{C}}{P} \cdot [\vec{x}]_{\mathcal{C}}$ for all vectors \vec{x} in \mathbb{R}^3).

$$\begin{bmatrix} 1 & | & \mathcal{O} & \vdots & | & | & -1 \\ -1 & | & 0 & | & | & 1 \\ 0 & 0 & | & 0 & 2 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}_{2} - \mathcal{R}_{2} + \mathcal{R}_{1}} \begin{bmatrix} 1 & | & 0 & \vdots & | & 1 & -1 \\ 0 & 2 & 0 & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & | & 0 & \vdots & | & 1 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}_{1} - \mathcal{R}_{1} - \mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}_{1} - \mathcal{R}_{1} - \mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix} \xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 2 & -1 \end{bmatrix}$$

$$\xrightarrow{\mathcal{R}_{2} - \frac{1}{2}\mathcal{R}_{2}} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 0 & 1 & 0 & -1 \\ 0 & | & 0 & 0 & 0 & -1 & -1 \\ 0 & | & 0 & 0 & 0 & -1 & 0 \\ 0 & | & 0 & 0 & 0 & -1 & 0 \\ 0 & | & 0 & 0 & 0 & -1 & -1 \\ 0 & | & 0 & 0 & 0 & -1 & -1 \\ 0 & | & 0 & 0 & 0 & -1 & -1 \\ 0 & | & 0 & 0 & 0 & -1 & -1 \\ 0 & | & 0 & 0 & 0 & -1 & -1 \\ 0 & | & 0 & 0 & -1 & -1 \\ 0 & | & 0 & 0 & -1 & -1 \\ 0 & | & 0 & 0 & -1 & -1 \\ 0 & | & 0 & 0 & -1 & -1 \\ 0 & | & 0 &$$

$$\begin{bmatrix} \vec{v} \\ \vec{v} \end{bmatrix}_{p} = \begin{bmatrix} \langle 0 - 1 \\ 0 \\ 0 \\ 2 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix}$$

$$\widetilde{V} = 0.\widetilde{c_1} + 1.\widetilde{c_2} + 0.\widetilde{c_3} = \begin{bmatrix} 1\\ 1\\ 2 \end{bmatrix}$$

$$\left(d_{50}: \quad \widetilde{V} = 0.\widetilde{c_1} + 1.\widetilde{c_2} + 2.\widetilde{c_3}\right)$$