## Multiple Choice

**1.**(5pts) Find the reduced echelon form of the matrix 
$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 2 & 2 \\ 3 & 4 & 2 \end{bmatrix}$$
.  
(a)  $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$  (b)  $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$  (c)  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$  (d)  $\begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$   
(e)  $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 

 $\mathbf{2.}(5 \text{pts})$  Determine by inspection which one of the following sets of vectors is linearly independent.

(a) 
$$\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix} \right\}$$
  
(b)  $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\4\\6 \end{bmatrix}, \begin{bmatrix} 1\\2\\-4 \end{bmatrix} \right\}$   
(c)  $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1\\2 \end{bmatrix} \right\}$   
(d)  $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\-2 \end{bmatrix} \right\}$   
(e)  $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$ 

**3.**(5pts) For which value of h is the vector  $\begin{bmatrix} 1 \\ h \\ 2 \end{bmatrix}$  in the span of the vectors  $\begin{bmatrix} 1 \\ -3 \\ 4 \end{bmatrix}$  and  $\begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}$ ? (a) h = 0 (b) h = 1 (c) h = 2 (d) h = 3 (e) h = 4

- **4.**(5pts) Let A be a  $3 \times 5$  matrix A and **b** in  $\mathbb{R}^3$ . Which of the following statements about the matrix equation  $A\mathbf{x} = \mathbf{b}$  for  $\mathbf{x} \in \mathbb{R}^5$ , and the corresponding homogeneous equation  $A\mathbf{x} = \mathbf{0}$ , could be true?
  - (a)  $A\mathbf{x} = \mathbf{b}$  has infinitely many solutions.
  - (b)  $A\mathbf{x} = \mathbf{0}$  is inconsistent.
  - (c)  $A\mathbf{x} = \mathbf{0}$  has exactly two solutions.
  - (d)  $A\mathbf{x} = \mathbf{0}$  has a unique solution and  $A\mathbf{x} = \mathbf{b}$  has infinitely many solutions.
  - (e)  $A\mathbf{x} = \mathbf{b}$  has a unique solution and  $A\mathbf{x} = \mathbf{0}$  has infinitely many solutions.

- **5.**(5pts) Recall that an  $m \times n$  matrix has m rows and n columns. Let  $T : \mathbb{R}^6 \to \mathbb{R}^8$  be a linear transformation. What is the size of the standard matrix A for T?
  - (a)  $8 \times 6$
  - (b)  $6 \times 6$
  - (c)  $8 \times 8$
  - (d)  $6 \times 8$
  - (e) There is not enough information to determine the answer.

**6.**(5pts) Let  $T : \mathbb{R}^2 \to \mathbb{R}^2$  be a linear transformation such that  $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}$  and  $T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}7\\-2\end{bmatrix}$ . What is the standard matrix A for T?

- (a)  $A = \begin{bmatrix} 1 & 6 \\ 2 & -4 \end{bmatrix}$
- (b)  $A = \begin{bmatrix} 1 & 2 \\ 7 & -2 \end{bmatrix}$
- (c)  $A = \begin{bmatrix} 1 & 2 \\ 6 & -4 \end{bmatrix}$ (d)  $A = \begin{bmatrix} 1 & 6 \\ 2 & 5 \end{bmatrix}$
- (e) Since we do not know  $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$ , there is not enough information to determine the answer.

**7.**(5pts)Which of the following is a subspace of  $\mathbb{R}^3$ ?

| (1) The set of all vectors, $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$      | $\begin{bmatrix} a \\ b \end{bmatrix}$ , where $a, b, c$ are positive.         |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| (2) The set of all vectors, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ | , where $a, b$ are any numbers.                                                |
| (3) The set of all vectors, $\begin{bmatrix} a \\ c \\ c \end{bmatrix}$ | , where $a, c$ are any numbers.                                                |
| (4) The set of all vectors, $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$ | , where $a, b, c$ are integers.                                                |
| (5) The set of all vectors, $\begin{bmatrix} 2\\ 2\\ 3 \end{bmatrix}$   | $\begin{bmatrix} a \\ a \\ a \end{bmatrix}$ , where <i>a</i> is a real number. |
| (a) $(3)$ and $(5)$ (b) Only (                                          | 3) 	(c) Only (5) 	(d) (4) and (5) (e) (1) and (2)                              |

8.(5pts) Which matrix below is invertible?

(a) 
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 2 & 0 \end{bmatrix}$$
 (b)  $\begin{bmatrix} 2 & 3 & 0 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}$  (c)  $\begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$  (d)  $\begin{bmatrix} 1 & 1 & 4 & 2 \\ 8 & 0 & 6 & 3 \\ -1 & 2 & 7 & 1 \end{bmatrix}$   
(e)  $\begin{bmatrix} 1 & 3 & -1 \\ -4 & -8 & 2 \\ 2 & 2 & 0 \end{bmatrix}$ 

**9.**(5pts)Let A be a  $3 \times 2$ , B be a  $3 \times 5$  matrix, and C be a  $2 \times 5$  matrix. Which of the following expressions make sense? (1) AB (2) BA (3) A + B

|                | (1) | AB                  |     | (2)     | BA          |     |          | (3) | A + | - <i>B</i>    |
|----------------|-----|---------------------|-----|---------|-------------|-----|----------|-----|-----|---------------|
|                | (4) | $A^T B + C$         |     | (5) A   | $(B^T) + C$ |     |          |     |     |               |
| (a) $(4)$ only |     | (b) $(2)$ and $(3)$ | (c) | (1) and | l (4)       | (d) | (5) only |     | (e) | (1) and $(5)$ |

## Partial Credit

 ${\bf 10.} (12 {\rm pts})$  Express the solution set of the homogeneous linear system

in parametric vector form.

**11.**(12pts) Find the inverse of  $A = \begin{bmatrix} 1 & 1 & 5 \\ 1 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ .

**12.**(12pts) (a) Find a basis for the column space of  $A = \begin{bmatrix} 1 & 0 & -3 & 1 \\ -2 & -2 & 4 & 0 \\ -1 & -1 & -1 & 1 \end{bmatrix}$ . (b) What is the rank of A?

## Solutions

| 1. | $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 2 & 2 \\ 3 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 2 & 2 & 2 \\ 3 & 4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & -2 \\ 0 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 4 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} $ where $\sim$ denotes row                                                                                                                                                                                                                                                                                                            |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2. | First vector in (a) is non-zero and second is not a scalar multiple of it; so they are linearly indepen-<br>dent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | (b) Not linearly independent; $3\mathbf{v}_2 - 2\mathbf{v}_1 = 0$ .<br>(c) Four vectors in $\mathbb{R}^3$ must be linearly dependent.<br>(d) Not linearly independent; $\mathbf{v}_3 = 3\mathbf{v}_1 - 2\mathbf{v}_2$<br>(e) Not linearly independent; contains the zero vector.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3. | $\begin{bmatrix} 1 & 2 &   & 1 \\ -3 & 3 &   & h \\ 4 & 2 &   & 2 \end{bmatrix}$ is consistent. Row reduce: $\begin{bmatrix} 1 & 2 &   & 1 \\ -3 & 3 &   & h \\ 4 & 2 &   & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 &   & 1 \\ 0 & 9 &   & h+3 \\ 0 & -6 &   & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 &   & 1 \\ 0 & 1 &   & (h+3)/9 \\ 0 & -6 &   & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 &   & 1/3 - 2h/9 \\ 0 & -6 &   & -2 \end{bmatrix}$                                                                                                                                                                                                                                               |
| 4. | $A\mathbf{x} = \mathbf{b}$ has infinitely many solutions if it is consistent and the reduced echelon form of A has at least one free variable, so (a) could be true. A linear system can have (only) 0, 1 or infinitely many solutions and a homogeneous system $A\mathbf{x} = 0$ is always consistent (with solution $\mathbf{x} = 0$ ) so (c) and (b) are false. If $A\mathbf{x} = \mathbf{b}$ is consistent, all its solutions are obtained by adding a solutions of the homogeneous system to a particular solution of $A\mathbf{x} = \mathbf{b}$ , so $A\mathbf{x} = \mathbf{b}$ and $A\mathbf{x} = 0$ have exactly the same number of solutions in that case; (d) and (e) are therefore also false. |
| 5. | Since T sends vectors in $\mathbb{R}^6$ to vectors in $\mathbb{R}^8$ , the standard matrix A must be $8 \times 6$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6. | The standard matrix for the linear transformation is the matrix $[T(\mathbf{e_1}) \ T(\mathbf{e_2}))]$ , where $\mathbf{e_1}$ is the first column of the 2 × 2 identity matrix and $\mathbf{e_2}$ is the second column of the 2 × 2 identity matrix.<br>By linearity, we have that $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) - T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix} - \begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}6\\-4\end{bmatrix}$ , thus the standard matrix $A = \begin{bmatrix}1 & 6\\2 & -4\end{bmatrix}$ .                                                                              |
| 7. | (1) is not a subspace since it is not closed under multiplication by scalars. For instance, $-2\begin{bmatrix}1\\1\\1\end{bmatrix} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | $\begin{bmatrix} -2\\ -2\\ -2\\ -2 \end{bmatrix}$ is not in the set. (2) is not a subspace since the zero vector, $\begin{bmatrix} 0\\ 0\\ 0 \end{bmatrix}$ , is not in the set. (4) is not $\begin{bmatrix} 1\\ -2\\ -2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    | a subspace since it is not closed under multiplication by scalars. For instance, $.5 \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} = \begin{vmatrix} .5 \\ .5 \end{vmatrix}$ is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | in the set. (3) and (5) satisfy all of the properties of a subspace.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

 $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$  so all columns are pivots so invertible. 8.  $3 \ 0$ 0 0 3 columns 1 and 2 are dependent so not invertible. 0 0 0  $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & 1 & 4 & 2 \\ 8 & 0 & 6 & 3 \\ -1 & 2 & 7 & 1 \end{bmatrix} \text{ are not square matrices and hence not invertible.}$ 2 0 0 0  $\begin{bmatrix} 1 & 2 & 0 & -1 \\ -1 \\ 2 \\ 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -1 \\ 0 & 4 & -2 \\ 0 & -4 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & -1 \\ 0 & 4 & -2 \\ 0 & 0 & 0 \end{bmatrix}$  so not invertible. 1 3 -4-8AB does not make sense since the number of columns of A is not equal to the number of rows of B. 9. For the same reason, BA also does not make sense. A + B does not make sense because we cannot sum matrices of different sizes.  $A^T B$  is a 2 × 5 matrix, which can be added to C, since C is a 2 × 5 matrix. So  $A^T B + C$  makes sense.  $A(B^T) + C$  does not make sense since the number of columns of A is not the same as the number of rows of  $B^T$ . So  $A(B^T) + C$  does not make sense.  $x_1 -$ = 0  $x_5 = 0$ The bound variables are  $x_1$ ,  $x_2$  and  $x_5$  (corresponding to pivot columns) and the free variables  $x_3$ ,  $x_4$  can take arbitrary values. Rewriting with free variables on the right,  $x_1$ (we include the equation  $x_i = x_i$ , for i = 3 or 4, to indicate that the free variable  $x_i$  can take arbitrary values). In parametric form  $\begin{vmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{vmatrix} = x_3 \begin{vmatrix} 1 \\ x_4 \\ 0 \\ 0 \end{vmatrix} + x_4 \begin{vmatrix} 0 \\ 1 \\ 0 \\ 0 \end{vmatrix}$ or writing  $x_3 = r$ ,  $x_4 = s$ , 0  $x_2$  $\begin{vmatrix} x_3 \\ x_3 \end{vmatrix} = r \begin{vmatrix} 1 \\ 1 \end{vmatrix} + s$ 0 0  $x_4$ 1

