Math 20580
Midterm 3
November 16, 2021
Calculators are NOT allowed. Do not remove this answer page - you will return the whole exam. You will be allowed 75 minutes to do the test. You may leave earlier if you are finished.

There are 8 multiple choice questions worth 7 points each and 4 partial credit questions each worth 11 points. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
2. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
3. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
4. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
5. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
6. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
7. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$
8. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$

Multiple Choice.
9.
10.
11.
12.

Total.

Part I: Multiple choice questions (7 points each)

1. Consider the line L spanned by the vector $\vec{v}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. The distance from the vector $\vec{x}=\left[\begin{array}{c}-7 \\ 1\end{array}\right]$ to the line L is
(a) $\sqrt{5}$
(b) $\sqrt{45}$
(c) $2 \sqrt{3}$
(d) 5
(e) $\sqrt{50}$
2. Consider the matrices

$$
A=\left[\begin{array}{ccccc}
2 & 4 & -2 & 1 & 11 \\
3 & 6 & -3 & 1 & 15 \\
-1 & -2 & 1 & 2 & 2 \\
4 & 8 & -4 & 4 & 28
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ccccc}
1 & 2 & -1 & 0 & 4 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

where B is the reduced row echelon form of A. A basis for the orthogonal complement of the row space of A is given by
(a) $\left\{\left[\begin{array}{c}2 \\ 3 \\ -1 \\ 4\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 2 \\ 4\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-4 \\ 0 \\ 0 \\ -3 \\ 1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 0 \\ -4\end{array}\right],\left[\begin{array}{c}0 \\ 0 \\ 0 \\ -1 \\ -3\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{c}-1 \\ -2 \\ 1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}4 \\ 8 \\ -4 \\ 4 \\ 28\end{array}\right]\right\}$
(e) $\left\{\left[\begin{array}{c}4 \\ 6 \\ -2 \\ 8\end{array}\right],\left[\begin{array}{c}-2 \\ -3 \\ 1 \\ -4\end{array}\right],\left[\begin{array}{c}11 \\ 15 \\ 2 \\ 28\end{array}\right]\right\}$
3. Consider the line L spanned by the unit vector $\vec{u}=\left[\begin{array}{c}3 / 5 \\ -4 / 5\end{array}\right]$, and let $\operatorname{proj}_{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the linear transformation that sends a vector to its orthogonal projection onto the line L. The standard matrix of the transformation proj_{L} is
(a) $\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$
(b) $\frac{1}{5}\left[\begin{array}{cc}3 & 5 \\ 5 & -4\end{array}\right]$
(c) $\frac{1}{25}\left[\begin{array}{cc}9 & -12 \\ -12 & 16\end{array}\right]$
(d) $\frac{1}{5}\left[\begin{array}{cc}3 & 0 \\ 0 & -4\end{array}\right]$
(e) none of the above
4. Which of the following functions is the solution of the equation $y^{\prime}=t y$ with $y(0)=1$?
(a) t
(b) $e^{\cos t}$
(c) $t^{2} / 2$
(d) e^{t}
(e) $e^{t^{2} / 2}$
5. Determine $f(t, y)$ if the differential equation $\frac{d y}{d t}=f(t, y)$ has direction field (the value of t is measured on the horizontal axis, and the value of y on the vertical axis)

(a) $\sin (y)$
(b) $t^{2}+y^{2}$
(c) y
(d) $-t$
(e) $y-t$
6. Consider the autonomous equation $y^{\prime}=y(y-1)(y-2)(y-3)$ with initial condition $y(0)=2.99$. Without solving the equation explicitly, find the limit $\lim _{t \rightarrow+\infty} y(t)$.
(a) 0
(b) 1
(c) 2
(d) 3
(e) ∞
7. The differential equation

$$
\frac{d y}{d t}+t y^{2}=0
$$

is
(a) an equation of order 2
(b) a partial differential equation
(c) linear
(d) separable
(e) none of the above
8. Which of the following sets of vectors are orthogonal?
(I) $\left\{\left[\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right],\left[\begin{array}{l}5 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}3 \\ -4 \\ -7\end{array}\right]\right\}$
(II) $\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{c}-5 \\ -2 \\ 1\end{array}\right]\right\}$
(III) $\left\{\left[\begin{array}{c}2 \\ -7 \\ -1\end{array}\right],\left[\begin{array}{c}-6 \\ -3 \\ 9\end{array}\right],\left[\begin{array}{c}3 \\ 1 \\ -1\end{array}\right]\right\}$
(IV) $\left\{\left[\begin{array}{c}2 \\ -5 \\ -3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}4 \\ -2 \\ 6\end{array}\right]\right\}$
(a) I only
(b) I and III only
(c) II only
(d) II and IV only
(e) none of these

Part II: Partial credit questions (11 points each). Show your work.
9. Let $W=\operatorname{Span}\left\{\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}\right\}$, where

$$
\vec{w}_{1}=\left[\begin{array}{l}
1 \\
1 \\
3 \\
1
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{c}
1 \\
3 \\
-1 \\
-1
\end{array}\right], \quad \vec{w}_{3}=\left[\begin{array}{c}
3 \\
3 \\
3 \\
-3
\end{array}\right]
$$

(a) Apply the Gram-Schmidt process to find an orthonormal basis for W.
(b) Find the $Q R$ decomposition of the matrix A with columns $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}$.
10. Let $A=\left[\begin{array}{cc}1 & 1 \\ 2 & 1 \\ -2 & 0\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}-2 \\ 3 \\ -1\end{array}\right]$.
(a) Find the least squares solution to the equation $A \vec{x}=\vec{b}$.
(b) Find the vector in the column space of A which is closest to \vec{b}.
11. Consider the differential equation

$$
y+\left(2 x-4 y^{2}\right) \cdot \frac{d y}{d x}=0
$$

(a) Explain why the equation is not exact.
(b) Find an integrating factor μ which only depends on the variable y.
(c) Write down the implicit solution which satisfies the initial condition $y(1)=1$.
12. (a) Find the solution of the initial value problem

$$
\left\{\begin{array}{l}
t^{2} y^{\prime}+4 t y=3 \\
y(1)=-1
\end{array}\right.
$$

(b) Find the maximal interval on which the solution to the initial value problem above is defined.

