Math 20580
Final Exam
December 10, 2021
Calculators are NOT allowed. You will be allowed 180 minutes to do the test.
There are 20 multiple choice questions worth 7 points each. You will receive 10 points for following the instructions. Record your answers by placing an \times through one letter for each problem on this answer sheet.

Sign the pledge. "On my honor, I have neither given nor received unauthorized aid on this Exam":

1. a b b
2. a b c d e
3. a b b d $\mathrm{d} \quad \mathrm{e}$
4. a b c d e
5. a b c c d
6. a b b c $\begin{array}{llll}\text { d } & \mathrm{e}\end{array}$

7. a b c d e
8. a b c d e
9. a b e d e
10. a b e d e
11. a b c d e
12. a b $\begin{array}{lllll}\mathrm{c} & \mathrm{d} & \mathrm{e}\end{array}$
13. a b e d e
14. a b c d e
15. a b c d e
16. a b c c e
17. a b c d e
18. a b c d e
19. a b c d e
20. Consider the bases $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ and $\mathcal{C}=\left\{\left[\begin{array}{l}2 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$ for \mathbb{R}^{2}. Find the
change of basis matrix $\mathcal{\mathcal { P }}$ change of basis matrix $\underset{\mathcal{C} \leftarrow \mathcal{B}}{\mathcal{P}}$.
(a) $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{cc}1 / 2 & 1 \\ 0 & 1\end{array}\right]$
(e) none of the above
21. Let M be the following matrix

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right] .
$$

Which of the following are eigenvalues of M ?
$\begin{array}{llll}\text { I. } 0 & \text { II. } 1 & \text { III. } 2 & \text { IV. } 3\end{array}$
(a) I, II, and IV only
(b) I, II, and III only
(c) II, III, and IV only
(d) all of them
(e) none of them
3. Let L be a line through the origin in \mathbb{R}^{2021}. What is the dimension of L^{\perp} ?
(a) 2021
(b) 2020
(c) 1997
(d) 1
(e) none of these
4. Consider the exact first-order equation

$$
\left(\frac{y}{x}+6 x\right)+(\ln (x)-2) y^{\prime}=0 .
$$

Which of the following is the general implicit solution to this equation?
(a) $y \ln (x)+3 x^{2}=C$
(b) $\frac{y^{2}}{2 x}+6 x y=C$
(c) $(\ln (x)-1) x-2 x=C$
(d) $y \ln (x)-2 y=C$
(e) $y \ln (x)+3 x^{2}-2 y=C$
5. Let A be a 2×2 matrix with $\operatorname{det}(A)=7$. Which of the following is true?
(a) A is NOT invertible
(b) A is invertible and $\operatorname{det}\left(A^{-1}\right)=7$
(c) $\operatorname{det}\left(A^{T}\right)=1 / 7$
(d) $A^{T} A$ is NOT invertible
(e) A is invertible and $\operatorname{det}\left(A^{-1}\right)=1 / 7$
6. Let \mathbb{P}_{2} be the vector space of polynomials of degree at most 2 , and consider its basis $\mathbb{B}=\left\{t^{2}+2 t-1,2 t+1,1\right\}$. With respect to \mathbb{B}, the coordinates of $t^{2}+6 t+4$ are:
(a) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{l}2 \\ 2 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{c}2 \\ -4 \\ 3\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$
(e) none of the above
7. Consider the initial-value problem

$$
\sin (t) y^{\prime \prime}+3 y=\tan (t), \quad y(1)=1
$$

Which of the following is the largest interval on which a solution is guaranteed to exist?
(a) $(0, \pi / 2)$
(b) $(0, \pi)$
(c) $(\pi / 2, \pi)$
(d) $(0, \infty)$
(e) $(-\infty, \infty)$
8. Let S be a subspace of \mathbb{R}^{3} of dimension 2 . Which of the following sets of vectors could be a basis for S ?
(a) $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 6\end{array}\right]\right\}$
(b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
(c) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]\right\}$
(e) none of these
9. What is the dimension of the row space of $A=\left[\begin{array}{cccc}1 & 2 & 0 & 5 \\ -3 & -5 & -1 & -12 \\ 2 & 3 & 1 & 8 \\ 0 & 0 & 0 & 1\end{array}\right]$?
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4
10. If $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & 0 & -2\end{array}\right]$ and $A^{-1}=\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]$ then b_{32} is:
(a) -2
(b) -1
(c) 0
(d) 1
(e) 2
11. Find the solution of the initial value problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}+y^{\prime}-2 y=0, \\
y(0)=3, y^{\prime}(0)=-6
\end{array}\right.
$$

(a) $2 e^{-3 t}$
(b) $e^{t}+2 e^{-2 t}$
(c) $3 e^{-2 t}$
(d) $-6 e^{t}+3 e^{-2 t}$
(e) $2 e^{t}+e^{-2 t}$
12. Consider the equation

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0 .
$$

Let y_{1} be the solution satisfying $y_{1}(0)=1, y_{1}^{\prime}(0)=2$, and let y_{2} be the solution satisfying $y_{2}(0)=3, y_{2}^{\prime}(0)=4$. Using Abel's formula, find the Wronskian $W\left(y_{1}, y_{2}\right)$.

Hint: you can find the constant in Abel's formula by computing $W\left(y_{1}, y_{2}\right)$ at $t=0$ using the initial conditions on y_{1}, y_{2}.
(a) 0
(b) $-2 e^{2 t}$
(c) $-2 e^{-2 t}$
(d) $4 e^{2 t}$
(e) $-2 e^{-t^{3} / 3}$
13. Consider the differential equation $y^{\prime \prime}-2 y^{\prime}+y=2 x e^{x}$. By the method of undetermined coefficients, a particular solution will have the form
(a) $\left(A x^{3}+B x^{2}\right) e^{x}$
(b) $(A x+B) e^{x}$
(c) $A x e^{x}$
(d) $A x e^{-x}$
(e) $A \sin (x)+B \cos (x)$
14. Find the solution of the initial value problem

$$
\left\{\begin{array}{l}
y+3 x y^{\prime}=0, \quad x>0 \\
y(1)=1
\end{array}\right.
$$

(a) $3 x-2$
(b) $x^{-1 / 3}$
(c) x^{2}
(d) $x^{-2 / 3}$
(e) there is no solution
15. Which of the following can not be the rank of a 7×5 matrix?
(a) 0
(b) 1
(c) 2
(d) 5
(e) 7
16. Let $A=\left[\begin{array}{cc}1 & 2 \\ -1 & -2 \\ 0 & 7\end{array}\right]$. Find the matrix Q in the $Q R$ decomposition of A.
(a) $\left[\begin{array}{cc}1 & 0 \\ -1 & 0 \\ 0 & 7\end{array}\right]$
(b) $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{2}{\sqrt{57}} \\ \frac{-1}{\sqrt{2}} & \frac{-2}{\sqrt{57}} \\ 0 & \frac{7}{\sqrt{57}}\end{array}\right]$
(c) $\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & 0 \\ \frac{-1}{\sqrt{2}} & 0 \\ 0 & 1\end{array}\right]$
(d) $\left[\begin{array}{cc}\sqrt{2} & 2 \sqrt{2} \\ 0 & 7\end{array}\right]$
(e) does not exist
17. Which of the following describes the least-squares solutions of the equation $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{cc}
1 & -1 \\
0 & 0 \\
-1 & 1
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

(a) $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ only
(b) $\left[\begin{array}{l}5 \\ 4\end{array}\right]$ only
(c) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ only
(d) infinitely many solutions
(e) no solutions
18. Which formula describes the general solution of the differential equation

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+6 y=0, t>0
$$

given the fact that $y_{1}(t)=t^{2}$ is a solution of this equation?
(a) $c_{1} t^{2}+c_{2} t^{3}$
(b) $c_{1} t^{2}+c_{2}$
(c) $c_{1} t^{2}+c_{2} t e^{t}$
(d) $c_{1} t \ln (t)+c_{2} t^{2}$
(e) $c_{1} t+c_{2} t^{2}$
19. Consider the differential equation $y^{\prime \prime}+y=\cos ^{2}(x)$. The functions

$$
y_{1}=\cos (x) \quad \text { and } \quad y_{2}=\sin (x)
$$

form a fundamental set of solutions for the associated homogeneous equation. Variation of parameters produces a solution to the nonhomogeneous ODE of the form

$$
y(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) .
$$

Up to a constant of integration, what is u_{1} ?
(a) $-\frac{1}{3} \sin ^{3}(x)$
(b) $\cos (x)$
(c) $-\frac{1}{2}-\frac{1}{4} \sin (2 x)$
(d) $\frac{1}{3} \cos ^{3}(x)$
(e) none of the above
20. Find the general solution of the equation $y^{\prime}+t^{2} y=t^{2}$.
(a) $C+e^{-t^{3} / 3}$
(b) $1+C e^{t^{3} / 3}$
(c) $t^{2}+C e^{-t}$
(d) $1+C e^{-t^{3} / 3}$
(e) cannot be found explicitly using methods we learned

