M20580 L.A. and D.E. Tutorial
 Quiz 2

1. For each one of the following matrices, determine whether the matrix is invertible, and find its inverse if it exists.
(a) $\left[\begin{array}{cc}5 & -1 \\ 3 & 4\end{array}\right]$
(b) $\left[\begin{array}{cc}-2 & 10 \\ -1 & 5\end{array}\right]$

Solution: Recall that a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if $a d-b c \neq 0$, and in this case the inverse is given by

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0, A$ is not invertible.
(a) Since $5(4)-(-1)(3)=23 \neq 0$, this matrix is invertible and its inverse is given by

$$
A^{-1}=\frac{1}{23}\left[\begin{array}{cc}
4 & 1 \\
-3 & 5
\end{array}\right]
$$

(b) Since $-2(5)-10(-1)=0$, this matrix is not invertible.
2. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
y^{2} \\
x
\end{array}\right] .
$$

Determine whether T is a linear transformation.

Solution: The transformation T is a linear transformation if $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ and $T(c \mathbf{u})=c T(\mathbf{u})$ for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{2}$ and $c \in \mathbb{R}$. Notice that

$$
T\left(c\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
c x \\
c y
\end{array}\right]\right)=\left[\begin{array}{c}
c^{2} y^{2} \\
c x
\end{array}\right]=c\left[\begin{array}{c}
c y^{2} \\
x
\end{array}\right] \neq c\left[\begin{array}{c}
y^{2} \\
x
\end{array}\right]=c T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right) .
$$

Hence, T cannot be a linear transformation. You can also check that the property $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ is not satisfied by T.

