M20580 L.A. and D.E. Tutorial
Quiz 3

1. Determine if the following vectors are linearly independent:
$\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 3\end{array}\right], \quad\left[\begin{array}{l}1 \\ 3 \\ 1 \\ 2\end{array}\right], \quad\left[\begin{array}{c}-2 \\ -1 \\ 0 \\ 1\end{array}\right]$

Solution: The matrix with rows formed by the vectors above can be reduced to the following matrix:

$$
\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
1 & 3 & 1 & 2 \\
-2 & -1 & 0 & 1
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
0 & 1 & 0 & -1 \\
0 & 3 & 2 & 7
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 2 & 10
\end{array}\right]
$$

Hence we could see that the rank of the matrix is 3 . Therefore, the given above three vectors are linearly independent.
2. Let $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ be a linear transformation given by:

$$
T\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-x_{2} \\
x_{1}+x_{2}
\end{array}\right], \text { for all }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \in \mathbb{R}^{2}
$$

Find the standard matrix for the linear transformation T, i.e., find a 2×2 matrix A such that $T(\mathbf{x})=A \mathbf{x}$.

Solution: (a) Since $T\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad T\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, so $A=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$.

