M20580 L.A. and D.E. Tutorial

Quiz 4

1. Find the change of basis matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ where two bases are

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} \quad \text { and } \quad \mathcal{C}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} .
$$

Solution: We get the augmented matrix which can be reduced as follows

$$
\left[\begin{array}{cc|cc}
1 & 1 & 1 & 2 \\
1 & 2 & -1 & 1
\end{array}\right] \sim\left[\begin{array}{cc|cc}
1 & 1 & 1 & 2 \\
0 & 1 & -2 & -1
\end{array}\right] \sim\left[\begin{array}{cc|cc}
1 & 0 & 3 & 3 \\
0 & 1 & -2 & -1
\end{array}\right] .
$$

Thus,

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{cc}
3 & 3 \\
-2 & -1
\end{array}\right] .
$$

2. Let $p(x)=1-2 x, q(x)=x+2 x^{2}, r(x)=-2+3 x-2 x^{2}$, and $s(x)=1+x+6 x^{2}$. Find real numbers a, b, and c such that $s(x)=a p(x)+b q(x)+c r(x)$ if they exist.

Solution: The equation $a p(x)+b q(x)+c r(x)=s(x)$ give a linear system whose augmented matrix is

$$
\left[\begin{array}{ccc|c}
1 & 0 & -2 & 1 \\
-2 & 1 & 3 & 1 \\
0 & 2 & -2 & 6
\end{array}\right]
$$

This can be reduced to

$$
\left[\begin{array}{ccc|c}
1 & 0 & -2 & 1 \\
0 & 1 & -1 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

which means that there are infinitely many solutions. We can choose $c=0, b=3$, and $a=1$ so that $a p(x)+b q(x)+c r(x)=s(x)$.

