M20580 L.A. and D.E. Tutorial Quiz 5

1. Let $V=\left\{A \in \mathcal{M}_{2 \times 2} \mid A^{T}=-A\right\}$. A matrix $A \in V$ is called skew symmetric. Find a basis \mathcal{B} for V, the vector space of all 2×2 skew symmetric matrices.

Hint: Consider a 2×2 matrix A and analyze the effect of the condition $A^{T}=-A$ on the entries of A.

Solution: Let $A \in \mathcal{M}_{2 \times 2}$, so $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Notice that

$$
A^{T}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \quad \text { and } \quad-A=\left[\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right]
$$

If $A^{T}=-A$, then $-a=a, c=-b, b=-c$ and $d=-d$. These restrictions simplify to $a=0, d=0$ and $c=-b$, so the matrix A actually looks like

$$
A=\left[\begin{array}{cc}
0 & b \\
-b & 0
\end{array}\right]=b\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]
$$

From the last equality, we see that V is spanned by $\mathcal{B}=\left\{\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\right\}$. Since \mathcal{B} has one nonzero element, it is linearly independent and is a basis for V.
2. Let $V=\mathbb{R}^{3}$ and consider the set $W=\left\{\left.\left[\begin{array}{c}a \\ b \\ a+b+1\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$. Determine whether W is a subspace of V.

Solution: Recall that every subspace W contains the zero vector 0. If we take

$$
\left[\begin{array}{c}
a \\
b \\
a+b+1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right],
$$

this forces $a=0$ and $b=0$, but $a+b+1=1 \neq 0$. Therefore, $\mathbf{0}$ is not an element of W and W is not a subspace of V.

