M20580 L.A. and D.E. Tutorial Quiz 6

1. Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{ccc}
3 & 0 & 5 \\
0 & 1 & -6 \\
0 & 0 & 8
\end{array}\right]
$$

Is A diagonalizable? Justify your answer.

Solution: The eigenvalues of an upper triangular matrix are the entries along its diagonal. In other words,

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{ccc}
3-\lambda & 0 & 5 \\
0 & 1-\lambda & -6 \\
0 & 0 & 8-\lambda
\end{array}\right]=(3-\lambda)(1-\lambda)(8-\lambda) .
$$

Hence, the eigenvalues of A are $\lambda=3,1,8$. Since A has three distinct eigenvalues, A is diagonalizable.
2. The eigenvalues of $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ are $\lambda_{1}=1$ and $\lambda_{2}=3$. Find a basis for the eigenspace for each eigenvalue.

Solution: The eigenspace of an eigenvalue λ is the nullspace of

$$
A-\lambda I=\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right] .
$$

Plugging in for λ, we obtain

$$
\begin{aligned}
& \operatorname{Nullspace}(A-I)=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}=\operatorname{Eigenspace}\left(\lambda_{1}\right) \\
& \operatorname{Nullspace}(A-3 I)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}=\operatorname{Eigenspace}\left(\lambda_{2}\right)
\end{aligned}
$$

