M20580 L.A. and D.E. Tutorial Quiz 7

1. Determine whether the following set of vectors is an orthogonal basis for \mathbb{R}^3 .

$$\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\-2\\\end{bmatrix} \right\}.$$

Solution: Let
$$\mathbf{u} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$. Then
 $\mathbf{u} \cdot \mathbf{v} = 1(1) + 1(-1) + 1(0) = 0$,
 $\mathbf{u} \cdot \mathbf{w} = 1(1) + 1(1) + 1(-2) = 0$,
 $\mathbf{v} \cdot \mathbf{w} = 1(1) + (-1)(1) + 0(-2) = 0$.

Hence, the vectors \mathbf{u} , \mathbf{v} and \mathbf{w} form an orthogonal set. By Theorem 5.1 in Poole's book, they are linearly independent. In consequence, they span \mathbb{R}^3 and form an orthogonal basis for \mathbb{R}^3 .

2. Let
$$\mathbf{u} = \begin{bmatrix} 2\\0\\-3 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0\\3\\-1 \end{bmatrix} \in \mathbb{R}^3$.

(a) Find $\mathbf{u} \cdot \mathbf{v}$.

Solution: $\mathbf{u} \cdot \mathbf{v} = 2(0) + 0(3) + (-3)(-1) = 3.$

(b) Find a unit vector in the direction of ${\bf u}.$

Solution: Recall that $\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{2(2) + 0(0) + (-3)(-3)} = \sqrt{13}$. Hence, a unit vector in the direction of \mathbf{u} is $\mathbf{w} = \frac{1}{\sqrt{13}}\mathbf{u}$.

(c) Find proj_{**u**}**v**.

Solution:
$$\operatorname{proj}_{\mathbf{u}}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}}\mathbf{u} = \frac{3}{13}\mathbf{u}$$