M20580 L.A. and D.E. Tutorial Quiz 7

1. Determine whether the following set of vectors is an orthogonal basis for \mathbb{R}^{3}.

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]\right\} .
$$

Solution: Let $\mathbf{u}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right], \mathbf{w}=\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$. Then

$$
\begin{aligned}
\mathbf{u} \cdot \mathbf{v} & =1(1)+1(-1)+1(0)=0 \\
\mathbf{u} \cdot \mathbf{w} & =1(1)+1(1)+1(-2)=0 \\
\mathbf{v} \cdot \mathbf{w} & =1(1)+(-1)(1)+0(-2)=0
\end{aligned}
$$

Hence, the vectors \mathbf{u}, \mathbf{v} and \mathbf{w} form an orthogonal set. By Theorem 5.1 in Poole's book, they are linearly independent. In consequence, they span \mathbb{R}^{3} and form an orthogonal basis for \mathbb{R}^{3}.
2. Let $\mathbf{u}=\left[\begin{array}{c}2 \\ 0 \\ -3\end{array}\right], \mathbf{v}=\left[\begin{array}{c}0 \\ 3 \\ -1\end{array}\right] \in \mathbb{R}^{3}$.
(a) Find $\mathbf{u} \cdot \mathbf{v}$.

Solution: u $\cdot \mathbf{v}=2(0)+0(3)+(-3)(-1)=3$.
(b) Find a unit vector in the direction of \mathbf{u}.

Solution: Recall that $\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}=\sqrt{2(2)+0(0)+(-3)(-3)}=\sqrt{13}$. Hence, a unit vector in the direction of \mathbf{u} is $\mathbf{w}=\frac{1}{\sqrt{13}} \mathbf{u}$.
(c) Find $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$.

Solution: $\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{3}{13} \mathbf{u}$.

