M20580 L.A. and D.E. Tutorial Quiz 8

1. Consider the following vectors:

$$
\mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

They form a basis for \mathbb{R}^{2}. Apply the Gram-Schmidt process to obtain an orthogonal basis (You must use Gram-Schmidt for full credit).

Solution: We will denote the vectors resulting from the Gram-Schmidt process \mathbf{v}_{1} and \mathbf{v}_{2}. To begin with, we just let $\mathbf{v}_{1}=\mathbf{u}_{1}$. To determine the second vector, we do:

$$
\mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{2}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\frac{3}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right]
$$

Therefore, the final answer is:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}
-1 / 2 \\
1 / 2
\end{array}\right]
$$

2. Find a least squares solution of $A \mathbf{x}=\mathbf{b}$, where $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.

Solution: We first solve for $A^{T} A$ and its inverse:

$$
A^{T} A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \Rightarrow\left(A^{T} A\right)^{-1}=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right]
$$

Then we have:

$$
\mathbf{x}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
1 / 2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
1
\end{array}\right]
$$

