M20580 L.A. and D.E. Tutorial

Quiz 9

1. Find $Q R$ factorization of a matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
3 & 0 & 4 \\
4 & 0 & -3
\end{array}\right]
$$

Solution: Since the column of A is already orthogonal,

$$
Q=\left[\begin{array}{ccc}
0 & 1 & 0 \\
3 / 5 & 0 & 4 / 5 \\
4 / 5 & 0 & -3 / 5
\end{array}\right]
$$

and

$$
\begin{aligned}
R & =Q^{T} A \\
& =\left[\begin{array}{ccc}
0 & 3 / 5 & 4 / 5 \\
1 & 0 & 0 \\
0 & 4 / 5 & -3 / 5
\end{array}\right]\left[\begin{array}{ccc}
0 & 1 & 0 \\
3 & 0 & 4 \\
4 & 0 & -3
\end{array}\right] \\
& =\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right] .
\end{aligned}
$$

2. Given the following differential equation

$$
x y y^{\prime}=x .
$$

- What is the order of this differential equation?
- Is it linear?
- What is a solution of this differential equation?

Solution: This is a nonlinear differential equation of order 1. To solve for a solution of this differential equation, we can use separation of variable method. That is we have

$$
y y^{\prime}=1 .
$$

Then integrate both sides with respect to x, we get

$$
\frac{1}{2} y^{2}=x+C .
$$

Then $y^{2}=2 x+2 C$.

