M20580 L.A. and D.E. Tutorial Worksheet 10

- (a) Every linearly independent set of vectors are orthogonal.
- (b) Every orthogonal set of vectors are linearly independent.
- (c) Every nontrivial subspace of \mathbb{R}^n has an orthonormal basis.
- (d) $\operatorname{proj}_W \mathbf{x}$ is orthogonal to every vector in W.
- (e) If $A\mathbf{x} = \mathbf{b}$ is a consistent linear system, then $A^T A \mathbf{x} = A^T \mathbf{b}$ is also consistent.
- (f) If $A\mathbf{x} = \mathbf{b}$ is an inconsistent linear system, then $A^T A \mathbf{x} = A^T \mathbf{b}$ is also inconsistent.

Solution:

- (a) False. In \mathbb{R}^2 , the vectors (1,0) and (1,1) form basis, hence they are linearly independent, but they are not orthogonal since $(1,0) \cdot (1,1) = 1 \neq 0$.
- (b) False. Any orthogonal set of **nonzero** vectors are linearly independent.
- (c) True. Any nontrivial subspace has a basis and we can use the Gram-Schmidt process to find an orthonormal basis.
- (d) False. W contains the vector $\operatorname{proj}_W \mathbf{x}$. What is true is that $\mathbf{x} \operatorname{proj}_W \mathbf{x}$ is orthogonal to every vector in W.
- (e) True. A solution to $A^T A \mathbf{x} = A^T \mathbf{b}$ is a least squares solution to $A \mathbf{x} = \mathbf{b}$. If $A \mathbf{x} = \mathbf{b}$ is consistent, then multiplying both sides on the left by A^T gives $A^T A \mathbf{x} = A^T \mathbf{b}$. In other words, any solution to $A \mathbf{x} = \mathbf{b}$ is also a solution to $A^T A \mathbf{x} = A^T \mathbf{b}$.
- (f) False. $A^T A \mathbf{x} = A^T \mathbf{b}$ is always consistent. A solution is a least squares solution to $A \mathbf{x} = \mathbf{b}$.

2. Find the orthogonal projection of $\mathbf{v} = \begin{bmatrix} 1\\ 2\\ -3 \end{bmatrix}$ onto the subspace $W = \text{span}(\mathbf{u}_1, \mathbf{u}_2)$ in \mathbb{R}^3 , where $\mathbf{u}_1 = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} -1\\ 2\\ 1 \end{bmatrix}$. Find the distance from \mathbf{v} to W. Is there a fast way to verify that the distance from $\mathbf{x} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ to W is 0?

Solution: Note that $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$, thus \mathbf{u}_1 and \mathbf{u}_2 form orthogonal basis of W. Then $\operatorname{proj}_W(\mathbf{v}) = \frac{(1, 2, -3) \cdot (1, 0, 1)}{\|(1, 0, 1)\|^2} (1, 0, 1) + \frac{(1, 2, -3) \cdot (-1, 2, 1)}{\|(-1, 2, 1)\|^2} (-1, 2, 1)$ $\operatorname{proj}_W(\mathbf{v}) = (-1, 0, -1)$ $\operatorname{perp}_W(\mathbf{v}) = \mathbf{v} - \operatorname{proj}_W(\mathbf{v}) = (1, 2, -3) - (-1, 0, -1) = (0, 2, -2)$

Distance from \mathbf{v} to W is $\|\operatorname{perp}_W(\mathbf{v})\| = 2\sqrt{2}$. Yes, \mathbf{x} is linear combination of \mathbf{u}_1 and \mathbf{u}_2 thus it is in W and distance from it to W is 0.

3. Find the standard matrix, P, of the orthogonal projection onto the subspace $W = \operatorname{span} \left(\begin{bmatrix} 3 \\ -1 \end{bmatrix} \right)$. Then use this matrix to find the orthogonal projection of $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ onto W.

Solution: Let (x, y) be a vector in \mathbb{R}^2 . Then $\operatorname{proj}_W((x, y)) = \frac{(x, y) \cdot (3, -1)}{\|(3, -1)\|^2} (3, -1) = \frac{3x - y}{10} (3, -1)$. Since $\operatorname{proj}_W((1, 0)) = (9/10, -3/10)$ and $\operatorname{proj}_W((0, 1)) = (-3/10, 1/10)$, then $P = \begin{bmatrix} 9/10 & -3/10 \\ -3/10 & 1/10 \end{bmatrix}$. Using the matrix P, we find the orthogonal projection of $\mathbf{v} = (-1, 1)$ onto W is $P = \begin{bmatrix} 9/10 & -3/10 \\ -3/10 & 1/10 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -6/5 \\ 2/5 \end{bmatrix}$. Alternative solution: Note that $W = \operatorname{span}((3, -1))$ is the also span of the (3/10, -1/10) which form

Note that $W = \operatorname{span}((3, -1))$ is the also span of the (3/10, -1/10) which form orthonormal basis of W. Then the matrix of orthogonal projection can be find as: $\begin{bmatrix} \frac{3}{10} \\ \frac{-1}{10} \end{bmatrix} \cdot \begin{bmatrix} \frac{3}{10} & \frac{-1}{10} \end{bmatrix} = \begin{bmatrix} \frac{9}{10} & \frac{-3}{10} \\ \frac{-3}{10} & \frac{1}{10} \end{bmatrix}.$ 4. Use the Gram-Schmidt Process to find an orthogonal basis for the column space of the matrix $\begin{bmatrix} 0 & -2 & -2 \\ 1 & 0 & 0 \\ 1 & -2 & -1 \end{bmatrix}$. Normalize the obtained orthogonal basis.

Solution: Let
$$v_1 = (0, 1, 1)$$
.
Then $v_2 = (-2, 0, -2) - \frac{(-2, 0, -2) \cdot (0, 1, 1)}{\|(0, 1, 1)\|^2} (0, 1, 1) = (-2, 1, 3)$.
Then $v_3 = (-2, 0, -1) - \left(\frac{(-2, 0, -1) \cdot (0, 1, 1)}{\|(0, 1, 1)\|^2} (0, 1, 1) + \frac{(-2, 0, -1) \cdot (-2, 1, 3)}{\|(-2, 1, 3)\|^2} (-2, 1, 3)\right)$
 $= (-13/7, 3/7, 9/7)$.
After normalization we have:
 $u_1 = \frac{v_1}{\|v_1\|} = (0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}),$
 $u_2 = \frac{v_2}{\|v_2\|} = (-2/\sqrt{14}, 1/\sqrt{14}, 3/\sqrt{14}),$
 $u_3 = \frac{v_3}{\|v_3\|} = (-13/\sqrt{259}, 3/\sqrt{259}, 9/\sqrt{259}),$

5. Find a least squares solution of $A\mathbf{x} = \mathbf{b}$, where $A = \begin{bmatrix} 1 & -2 \\ 0 & -3 \\ 2 & 5 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ -2 \end{bmatrix}$, by using normal equations.

Hint:

(i) Observe that $A\mathbf{x} = \mathbf{b}$ is inconsistent.

(ii) Let $\hat{\mathbf{x}}$ be the least squares solution of $A\mathbf{x} = \mathbf{b}$. Recall that $\mathbf{b} - A\hat{\mathbf{x}} = \operatorname{perp}_{\operatorname{Col}(A)}(\mathbf{b})$. The least square solution $\hat{\mathbf{x}}$ satisfies $A^T(\mathbf{b} - A\hat{\mathbf{x}}) = 0$ or $A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$.

(iii) Find $A^T A$ and $A^T \mathbf{b}$. Solve $A^T A \mathbf{x} = A^T \mathbf{b}$ to find $\hat{\mathbf{x}}$.

Solution: We have
$$A^T = \begin{bmatrix} 1 & 0 & 2 \\ -2 & -3 & 5 \end{bmatrix}$$
. So, $A^T A = \begin{bmatrix} 5 & 8 \\ 8 & 38 \end{bmatrix}$, and $A^T \mathbf{b} = \begin{bmatrix} 0 \\ -21 \end{bmatrix}$. So, the normal equation is $\begin{bmatrix} 5 & 8 \\ 8 & 38 \end{bmatrix} \mathbf{x} = \begin{bmatrix} 0 \\ -21 \end{bmatrix}$.
Thus,
 $\mathbf{x} = \begin{bmatrix} 38/126 & -8/126 \\ -8/126 & 5/126 \end{bmatrix} \begin{bmatrix} 0 \\ -21 \end{bmatrix} = \begin{bmatrix} 4/3 \\ -5/6 \end{bmatrix}$ is a least squares solution.