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M20580 L.A. and D.E. Tutorial
Worksheet 11

1. Find the QR factorization of the matrix

A =

 0 −1 2
1 −1 2
1 −1 0



Solution: First we use Gram-Schmidt process to produce an orthogonal set.

v1 = x1 =

 0
1
1


v2 = x2 −

(
v1 · x2

v1 · v1

)
v1 =

 −1
−1
−1

− −2

2

 0
1
1

 =

 −1
0
0


v3 = x3 −

(
v1 · x3

v1 · v1

)
v1 −

(
v2 · x3

v2 · v2

)
v2

=

 2
2
0

− 2

2

 0
1
1

− −2

1

 −1
0
0

 =

 0
1
−1


Then the orthonormal basis for col(A) is

{
v1

∥v1∥
,

v2

∥v2∥
,

v3

∥v3∥

}
=


 0

1/
√
2

1/
√
2

 ,

 −1
0
0

 ,

 0

1/
√
2

−1/
√
2

 .

A = QR for some upper triangular matrix R, to find R we use the fact that Q has
orthonormal columns, hence QTQ = I. Therefore QTA = QTQR = IR = R

R = QTA =

 0 1/
√
2 1/

√
2

−1 0 0

0 1/
√
2 −1/

√
2

 0 −1 2
1 −1 2
1 −1 0

 =

 2/
√
2 −2/

√
2 2/

√
2

0 1 −2

0 0 2/
√
2


A = QR =

 0 −1 0

1/
√
2 0 1/

√
2

1/
√
2 0 −1/

√
2

 √
2 −

√
2

√
2

0 1 −2

0 0
√
2

 .
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2. Find a least squares solution of Ax = b, where A =


1 −2
0 −3
2 5
3 0

 and b =


4
2
−2
4

 by

using normal equations.

Solution: We have AT =

[
1 0 2 3
−2 −3 5 0

]
. So ATA =

[
14 8
8 38

]
, and ATb =[

12
−24

]
. Then the normal equation is[

14 8
8 38

]
x =

[
12
−24

]
Thus

x =
(
ATA

)−1
ATb =

[
19/234 −2/117
−2/117 7/234

] [
12
−24

]
=

[
18/13
−12/13

]
is a least squares solution.
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3. For each of the following, state the order of the given ordinary differential equation.
Determine whether the equation is linear or nonlinear by matching it with (6) in Section
1.1:

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = g(x).

(a) (1− x)y′′ − 4xy′ + 5y = cos(x)

(b) t5y(4) − t3y′′ + 6y = 0

(c) d2y
dx2 =

√
1 + ( dy

dx
)2

(d) (sin θ)y′′′ − (cos θ)y′ = 2

Solution: (a) The highest derivative in the equation is y′′; thus the equation is
second order. Matching with (6) in Section 1.1 gives a2(x) = 1 − x, a1(x) = −4x,
a0(x) = 5, and g(x) = cos(x); thus the equation is linear.

(b) The highest derivative in the equation is y(4); thus the equation is fourth or-
der. Matching with (6) in Section 1.1 gives a4(t) = t5, a2(t) = −t3, a0(t) = 6, and
a3(t) = a1(t) = g(t) = 0; thus the equation is linear.

(c) The highest derivative in the equation is d2y
dx2 ; thus the equation is second or-

der. Matching with (6) in Section 1.1 is not possible; thus the equation is nonlinear.

(d) The highest derivative in the equation is y′′′; thus the equation is third order.
Matching with (6) in Section 1.1 gives a3(θ) = sin(θ), a1(θ) = − cos(θ), g(θ) = 2,
and a2(θ) = a0(θ) = 0; thus the equation is linear.
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4. For each of the following, verify that the indicated function y = ϕ(x) is an explicit solu-
tion of the given first-order differential equation.

(a) (y − x)y′ = y − x+ 8; y = x+ 4
√
x+ 2

(b) y′ = 2xy2; y = 1/(4− x2)

Solution: In order to check that the indicated function is an explicit solution of the
given first-order differential equation, we need to substitute for y and y′ and check
that the equation holds.

(a) First find y′:

d

dx
(x+ 4

√
x+ 2) =

d

dx
(x) +

d

dx
(4(x+ 2)1/2)

= 1 + 4
(1
2

)
(x+ 2)−1/2 d

dx
(x+ 2)

= 1 +
2√
x+ 2

Next substitute for y and y′ on the left-hand side of the equation and check that it
equals the right-hand side of the equation:

(y − x)y′ = (x+ 4
√
x+ 2− x)

(
1 +

2√
x+ 2

)
= 4

√
x+ 2

(
1 +

2√
x+ 2

)
= 4

√
x+ 2 + 8

= x+ 4
√
x+ 2− x+ 8

= y − x+ 8

(b) First find y′:

d

dx
(1/(4− x2)) =

d

dx
((4− x2)−1)

= −(4− x2)−2 d

dx
(4− x2)

=
2x

(4− x2)2

Next substitute for y and y′ on the left-hand side of the equation and check that it
equals the right-hand side of the equation:
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y′ =
2x

(4− x2)2

= 2x

(
1

(4− x2)2

)

= 2x

(
1

(4− x2)

)2

= 2xy2
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5. For each of the following, solve the given differential equation by separation of variables.

(a) dy
dx

= sin(5x)

(b) x dy
dx

= 4y

Solution: To solve a separable differential equation, first separate the equation into
the form p(y)dy = g(x)dx. Then integrate both sides and solve for y (if needed).

(a) First separate the equation:

dy

dx
= sin(5x)

dy = sin(5x)dx

Next integrate both sides (use u-substitution in this case with u = 5x):∫
dy =

∫
sin(5x)dx

y =

∫
sin(u)

1

5
du

y =
1

5
(− cos(u)) + C

y = −1

5
cos(5x) + C

The equation is already solved for y, so this is our solution.

(b) First separate the equation:

x
dy

dx
= 4y

dy

y
=

4dx

x

Next integrate both sides: ∫
dy

y
=

∫
4dx

x

ln |y| = 4 ln |x|+ C

Last solve the equation for y (using logarithm properties in this case):
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ln |y| = 4 ln |x|+ C

ln |y| = ln(x4) + C

eln |y| = eln(x
4)+C

y = Ax4
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6. For each of the following, solve the given initial-value problem.

(a) dx
dt

= 4(x2 + 1), x(π/4) = 1

(b) x2 dy
dx

= y − yx, y(−1) = −1

Solution: To solve an initial value problem, first find the solution to the differential
equation. Then use the inital condition to solve for C.

(a) First solve the differential equation:

dx

dt
= 4(x2 + 1)

dx

x2 + 1
= 4dt∫

dx

x2 + 1
=

∫
4dt

arctan(x) = 4t+ C

x = tan(4t+ C)

Next solve for C using the initial condition:

(1) = tan(4
(π
4

)
+ C)

1 = tan(π + C)

π + C =
π

4

C = −3π

4

Thus the solution is x = tan(4t− 3π
4
).

(b) First solve the differential equation:

x2 dy

dx
= y − yx

x2 dy

dx
= y(1− x)

dy

y
=

1− x

x2
dx∫

dy

y
=

∫
1

x2
dx−

∫
1

x
dx

ln |y| = −1

x
− ln |x|+ C
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Next solve for C using the initial condition:

ln |(−1)| = − 1

(−1)
− ln |(−1)|+ C

0 = 1− 0 + C

C = −1

Thus the solution is ln |y| = − 1
x
− ln |x| − 1.


