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Math 20580 L.A. and D.E. Tutorial
Worksheet 12

Multiple-choice questions.

1. Figure 1 shows the direction field for the differential equation
dy

dt
= f(y), where f(y) is

a polynomial of third degree.
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Figure 1

Which one of the following statements is FALSE?

A. The solution with initial value y(0) = 9 is decreasing and going to 8 as t→ ∞.
B. The equilibrium solutions of this differential equations are y = 8, y = 2 and y = 0.
C. y = 8 and y = 0 are asymptotically stable solutions.
D. y = 2 is an unstable solution.
E. The solution with initial value y(0) = −2 is increasing and becomes equal to 0 in
finite time.

Solution: Looking at this direction field we see that all statements are true, except
the statement:“The solution with initial value y(0) = −2 is increasing and becomes
equal to 0 in finite time.” In fact, the solution with initial value y(0) = −2 can
not meet the equilibrium solution y(t) = 0 at some time t0 > 0 because then we

would have two solutions to the equation
dy

dt
= f(y) with initial data y(t0) = 0,

contradicting the basic theorem about existence and uniqueness of solution when
f(y) is continuously differentiable. However, if we changed the statement to “The
solution with initial value y(0) = −2 is increasing and goes to 0 as t goes to infinity,”
then that would be TRUE.
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2. Which of the follow differential equations has the direction field shown in Figure 1 above?

A.
dy

dt
= (y − 2)(y + 2)(y − 8)

B.
dy

dt
= −y(1− y

2
)(1− y

8
)

C.
dy

dt
= y(1− y

2
)(1− y

8
)

D.
dy

dt
= −(2− y)2(8− y)

E.
dy

dt
= (2− y)2(8− y)

Solution: Looking at the direction field in Figure 1, we see that only the differential

equation
dy

dt
= −y(1 − 0.5y)(1 − 0.125y) has the equilibrium solutions y = 0, 2, 8

and the slopes of the arrows are consistent with the sign of the function f(y) =
−y(1− 0.5y)(1− 0.125y)

3. Which of these ordinary differential equations are 2nd-order and non-linear?

(1) y′′ + (sinx)y′ + (tanx)y = ex

(2) y′′ + (sinx)y′ + tan(xy) = ex

(3) y′ + tan(xy) = ex

(4) y′ + (tanx)y = ex

(5) y′′′ + ety = 0

(6) y′′ + ety = 0

A. (2), (4) and (6) B. (1), (3) and (4) C. (2) and (6) D. (5) and (6)

Solution:

(1) y′′ + (sinx)y′ + (tanx)y = ex is second-order and linear.

(2) ✓ y′′ + (sinx)y′ + tan(xy) = ex is second-order and nonlinear.

(3) y′ + tan(xy) = ex is first-order and nonlinear.

(4) y′ + (tanx)y = ex is first-order and linear.

(5) y′′′ + ety = 0 is third-order and linear.

(6) ✓ y′′ + ety = 0 is second-order and nonlinear.
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4. Find all the stable equilibrium solutions of the autonomous system

dy

dt
= 6y − 5y2 + y3.

A. y = 0 B. y = 0, y = 2 C. y = 2 D. y = 0, y = 2, y = 3 E. y = 3

Solution:

The equilibria occur at solutions to 6y− 5y2 + y3 = 0. Factor the LHS expression as
y(y − 2)(y − 3), so the solutions are y = 0, 2, 3.

For a stable equilibrium at y = y0, we need
dy
dt

to change sign from positive to negative
as y crosses y0. (Draw the diagram!)

Crossing 0, dy
dt

= y(y − 2)(y − 3) changes sign from negative to positive, so this
equilibrium is unstable. The same thing happens at 3.

But when crossing 2, y(y − 2)(y − 3) is positive when y is slightly less than 2, and
y(y − 2)(y − 3) is negative when y is slightly more than 2. So y = 2 is a stable
equilibrium.

5. Determine the general solution of the differential equation

(x2 + 1)
dy

dx
= y.

A. y = x3

3
+ x+ c

B. y = c(x2 + 1)
C. y = cex

2+1

D. y = cetan
−1 x

E. y = etan
−1 x + c

Solution: We may solve for y by separation of variables.

1

y
dy =

1

x2 + 1
dx∫

dy

y
=

∫
dx

x2 + 1

ln |y| = tan−1(x) + c

|y| = etan
−1(x)+c

|y| = etan
−1(x)ec

We may rewrite this last expression as y = cetan
−1 x.
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6. Determine an interval where the solution to the initial value problem is guaranteed to
exist.

(t2 − 4)y′ =
√
2− t ln(1 + t), y(0) = 0.

A. −1 < t < 3 B. −1 < t C. −1 < t < 2 D. t < 3 E. −2 < t

Solution:

Rewrite this first-order, linear differential equation with initial condition as

y′ =

√
2− t ln(1 + t)

t2 − 4
, y(0) = 0.

The problem asks for the biggest open interval containing 0 over which the two
functions of t are continuous. We need t ≤ 2 for the square root; t > −1 for the log
function; and t ̸= 2,−2 for the division by t2 − 4. Hence −1 < t < 2.

Free response questions.

1. Consider the equation
y′ = (y3 − y)(9− y2)

with initial value y(0) = 2. Find lim
t→∞

y(t).

Solution:

The constant solutions are y = 0, y = ±1, y = ±3. Since y(0) = 2, the solution lies
between the lines y = 1 and y = 3. here y′ = (y3 − y)(9 − y2) is positive, since for
instance at y = 2, the derivative is (23−2)(9−22) = 6 ·5 = 30. Hence y is increasing
and goes to 3 as t goes to infinity.

2. Let y = ϕ(x) be a solution to
dy

dx
=

cos2(y)

x2
that satisfies ϕ(1) = 0. What is the interval

of definition of ϕ(x)? Find ϕ(2).

Solution:

This is a first-order, separable, non-linear differential equation. The interval of defi-
nition of y = ϕ(x) is the largest interval containing 1 on which 1

x2 is defined. This is
(0,∞).

To find ϕ(2), rewrite the equation as
dy

cos2 y
=
dx

x2
, and integrate both sides:
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∫
dy

cos2 y
=

∫
dx

x2
=⇒ tan(y) = −1

x
+ C.

Since ϕ(x) is a solution to the given differential equation, it satisfies tan(ϕ) = − 1
x
+C,

so ϕ(x) = arctan
(
− 1

x
+ C

)
.

We need to find ϕ(2), but before that we need to know C, which we will find using
the information ϕ(1) = 0.

ϕ(1) = arctan(−1 + C) = 0 =⇒ −1 + C = 0 =⇒ C = 1.

Therefore ϕ(x) = arctan
(
− 1

x
+ 1

)
=⇒ ϕ(2) = arctan

(
−1

2
+ 1

)
= arctan

(
1
2

)
.

3. Which of the following are first-order linear differential equations? Check all that apply:

□ y′ =
M(x)

N(y)
.

□ y′′ + P (x)y = Q(x).

□ y′ + P (x)y = Q(x).

□ P (x)y′ + y = Q(x)y2.

□ P (x)y′ +Q(x)y = R(x) .

□ y′ = P (x) +Q(x)y.

Write the formula for the integrating factor for each linear equation you found above.

Solution:

1. y′ =
M(x)

N(y)
— first-order, not necessarily linear (depending on what N(y) is),

separable.

2. y′′ + P (x)y = Q(x) — second-order, linear.

3. ✓ y′ + P (x)y = Q(x) — first-order, linear.

The integrating factor is µ(x) = e
∫
P (x)dx.

4. P (x)y′ + y = Q(x)y2 — first-order, non-linear.

5. ✓ P (x)y′ +Q(x)y = R(x) — first-order, linear.

We can rearrange this differential equation into y′ + Q(x)
P (x)

y = R(x)
P (x)

, so the

integrating factor is µ(x) = e
∫ Q(x)

P (x)
dx.
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6. ✓ y′ = P (x) +Q(x)y — first-order, linear.

We can rearrange this differential equation into y′ − Q(x)y = P (x), so the
integrating factor is µ(x) = e

∫
−Q(x)dx.

4. Solve the differential equation y′ = x3y + ex
4/4 sinx with y(0) = 1.

Solution:

This is a first-order, linear differential equation.

Rewrite it as y′ − x3y = ex
4/4 sinx, and find the integrating factor:

µ(x) = e
∫
−x3 dx = e−x4/4.

Multiply both sides of the differential equation by the integrating factor to get

e−x4/4y′ − e−x4/4xy = e−x4/4ex
4/4 sinx =⇒

(
e−x4/4y

)′
= sinx.

Continue using the integrating factor:

e−x4/4y =

∫
sinx dx =⇒ e−x4/4y = − cosx+ C =⇒ y = −ex4/4 cosx+ Cex

4/4.

Find C:
y(0) = 1 =⇒ −1 + C = 1 =⇒ C = 2.

Therefore the solution of the differential equation is

y = −ex4/4 cosx+ 2ex
4/4.

5. Consider the differential equation

(y − cos(x)) + (x+ sin(y))
dy

dx
= 0.

(a) Is the above differential equation exact?

Solution: M = y − cos(x) =⇒ My = 1.

N = x+ sin(y) =⇒ Nx = 1.

My = Nx =⇒ exact.
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(b) Find the solution of the above differential equation.

Solution: Answer: yxy − sin(x)− cos(y) = c

We want to find ψ(x, y) such that ψx = y − cos(x) and ψy = x+ sin(y).

The first condition ψx = y− cos(x) implies ψ(x, y) =
∫
y− cos(x) dx = xy− sin(x)+

h(y). This also gives ψy = x+ h′(y), which we will now use to find h(y).

The second condition ψy = x + sin(y) implies ψy = x + h′(y) = x + sin(y) =⇒
h′(y) = sin(y) =⇒ h(y) = − cos(y).

Therefore ψ(x, y) = xy− sin(x)−cos(y), and the solution to the differential equation
is xy − sin(x)− cos(y) = c for any constant c.

6. Consider the differential equation

2xy2 + (4x2y + 3)y′ = 0

Is it exact? If not, does it have an integrating factor that is a function of x or y alone?
If so, solve the differential equation with initial value y(1) = −1. (Express your solution
as y = some expression in x.)

Solution:

The differential equation is not exact:

M = 2xy2 =⇒ My = 4xy, while N = 4x2y + 3 =⇒ Nx = 8xy. Since My ̸= Nx,
the differential equation is not exact. However, we can find an integrating factor:

My −Nx = −4xy =⇒ My −Nx

M
= −2

y
is a function of y alone.

So we have an integrating factor µ(y) which is a function of y alone, and which

satisfies
dµ

dy
= −My −Nx

M
µ = 2

y
µ.

We can solve this separable first-order linear differential equation to find a µ(y) :∫
dµ

µ
=

∫
2

y
dy =⇒ ln |µ| = 2 ln |y| =⇒ µ(y) = y2 works.

Now multiply through by µ(y) = y2 to get

2xy4 + (4x2y3 + 3y2)y′ = 0

which is an exact equation. (You may check this.) So far we have turned our
original “almost exact” equation into this “exact” equation. Now we just need to
solve this exact equation. We need to find a function ψ(x, y) such that ψx = 2xy4

and ψy = 4x2y3 + 3y2:
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1. The first condition ψx = 2xy4 gives ψ(x, y) =
∫
2xy4dx = x2y4 + h(y).

2. Take the partial derivative of ψ(x, y) = x2y4 + h(y) w.r.t. y to get ψy =
4x2y3 + h′(y), and compare with the second condition ψy = 4x2y3 + 3y2 to get
that h′(y) = 3y2. Hence h(y) = y3 works.

Now we found ψ(x, y) = x2y4 + y3, so a general solution of the given differential
equation looks like x2y4 + y3 = c for any constant c.

If we want to find a specific solution that takes into account the initial condition
y(1) = −1, then we have to use that condition to find the constant c:

y(1) = −1 =⇒ c = 0.

Finally we need to single out one of many possible solutions that are described by
this equation x2y4 + y3 = 0. We begin by factoring:

0 = x2y4 + y3 = y3(x2y + 1)

As y(1) ̸= 0, the solution we want is x2y + 1 = 0. In other words, y = −1
x2 .


