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M20580 L.A. and D.E. Tutorial
Worksheet 13

1. Which of the following is true about the differential equation

(3y2 − 4x(y3 + 1))dx+ xy(2− 3xy)dy = 0.

(a) It is exact.

(b) It is homogeneous.

(c) It has an integrating factor that is a function of x alone.

(d) It has an integrating factor that is a function of y alone.

(e) None of the above.

Solution: The statement in (a) is false. If M(x, y) = 3y2−4x(y3+1) and N(x, y) =
xy(2 − 3xy), then My = 6y − 12xy2 and Nx = 2y − 6xy2. Since My 6= Nx, the
differential equation is not exact.

The statement in (b) is false. The differential equation is not homogeneous since it
cannot be written in the form

an(x)
dny

dxn
+ an−1(x)

dn−1y

dxn−1
+ · · ·+ a1(x)

dy

dx
+ a0(x)y = 0.

The statement in (c) is true. Notice that

My −Nx

N
=

4y − 6xy2

xy(2− 3xy)
=

2

x

is a function of x alone, so the differential equation has an integrating factor that is
a function of x alone and it is given by

µ(x) = e
∫ My−Nx

N
dx.

The statement in (d) is false. Notice that

Nx −My

M
=

−4y + 6xy2

3y2 − 4x(y3 + 1)

does not seem to simplify.

2. Solve the differential equation

(3y2 − 4x(y3 + 1))dx+ xy(2− 3xy)dy = 0.
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Solution: By (c) in the previous problem, this differential equation is not exact,
but it has an integrating factor that is a function of x alone, and is given by

µ(x) = e
∫

2
x
dx = x2.

Multiplying both sides of the differential equation by µ(x), we obtain

x2(3y2 − 4x(y3 + 1))dx+ x3y(2− 3xy)dy = 0.

and you can check that it is exact. Hence, there exists a function f(x, y) such that

∂f

∂x
= x2(3y2 − 4x(y3 + 1)) and

∂f

∂y
= x3y(2− 3xy).

From the first equation, f(x, y) = x3y2−x4y3−x4+g(y). Taking the partial derivative
of this expression with respect to y and setting it equal to x3y(2−3xy) gives g′(y) = 0,
so g(y) = c for some arbitrary constant c. Hence, f(x, y) = x3y2 − x4y3 − x4 + c.
This implies that the solution of the differential equation is x3y2−x4y3−x4 + c = c′

for some arbitrary constant c′.

3. For each one of the following differential equations, consider the given set of functions of
x. You can show that the given set is a set of solutions of the corresponding differential
equation. Determine whether the set is linearly independent.

(a) y′′ = 0 and {0, x}.
(b) y′′′ = 0 and {1, x, x2}.
(c) xy′′ − y′ − 4x3y = 0 and {ex2

, e−x
2}.

(d) y′′ − 3y′ + 2y = 0 and {ex, e2x}.

Solution: Recall that a set of solutions of a differential equation is linearly inde-
pendent if the Wronskian of those functions is not identically zero, so we compute
the Wronskian W of each set.

(a) W = 0.

(b) W = 2.

(c) W = −4x.

(d) W = e3x.
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The set in (a) is linearly dependent since its Wronskian is 0. Another way to conclude
that the set is linearly dependent is using linear algebra: any set containing the zero
vector is linearly dependent. The sets that are linearly independent are the ones in
(b), (c) and (d).

4. For each of the following differential equations, first check if it is linear and then solve
it using an appropriate method.

(a) dy
dt

= ty2 cos t, y(0) = 1

(b) tdy
dt

= t2 + y, y(1) = −2, t > 0,

(c) y′ = 2ty + 3t2et
2

(d) t2 dy
dt

+ ty = 1, t > 0.

Solution:

(a) This differential equation is not linear. Using the method of separation of
variables, we have:

dy

dt
= ty2 cos t =⇒ 1

y2
dy = t cos t dt

=⇒
∫
y−2dy =

∫
t cos t dt

Integration by parts:

u = t =⇒ du = dt

dv = cos t dt =⇒ v = sin t

=⇒ y−1

−1
= t sin t−

∫
sin t dt

=⇒ − y−1 = t sin t− (− cos t) + C

=⇒ − y−1 = t sin t+ cos t+ C

Since y(0) = 1, we have

−1−1 = 0 sin 0 + cos 0 + C =⇒ C = −1−1 − cos 0 = −1− 1 = −2

Therefore,

−y−1 = t sin t+ cos t− 2 =⇒ y−1 = 2− t sin t− cos t

=⇒ y =
1

2− t sin t− cos t
.
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(b) This differential equation is linear. We have

t
dy

dt
= t2 + y =⇒ t

dy

dt
− y = t2 =⇒ dy

dt
− t−1 · y = t.

Multiplying both sides of the equation by the following integrating factor

µ = e
∫
−t−1dt = e− ln |t| = e− ln t (|t| = t as t > 0)

= t−1, (Note: e− lnx is NOT −x)

we then have

t−1
dy

dt
− t−2y = 1 =⇒ (t−1y)′ = 1

=⇒ t−1y =

∫
1 · dt

=⇒ t−1y = t+ C

=⇒ y = t2 + Ct.

Since y(1) = −2, we have

−2 = 12 + C · 1 =⇒ C = −2− 1 = −3.

Therefore, y = t2 − 3t.

(c) This differential equation is linear. We have

y′ = 2ty + 3t2et
2

=⇒ y′ − 2t · y = 3t2et
2

.

We multiply both sides of the equation by the following integrating factor

µ = e
∫
(−2t)dt = e−t

2

to obtain

y′e−t
2 − 2te−t

2

y = 3t2 =⇒ (ye−t
2

)′ = 3t2

=⇒ ye−t
2

=

∫
3t2dt

=⇒ ye−t
2

= t3 + C.

Therefore, y = et
2
(t3 + C), where C is an arbitrary constant.

(d) This differential equation is linear. We have

t2
dy

dt
+ ty = 1 =⇒ dy

dt
+ t−1 · y = t−2.
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We multiply both sides of the equation by the following integrating factor

µ = e
∫
t−1dt = eln |t| = |t| = t. (|t| = t for t > 0)

to obtain

t
dy

dt
+ y = t−1 =⇒ (ty)′ = t−1

=⇒ ty =

∫
t−1dt

=⇒ ty = ln |t|+ C

=⇒ ty = ln t+ C. (|t| = t for t > 0)

Therefore, y = t−1 ln t+ Ct−1, where C is an arbitrary constant.

5. A tank originally has 100 liters of a brine with a concentration of 0.05 grams of salt per
liter. Brine with concentration of 0.02 grams of salt per liter is pumped into the tank at
a rate of 5 liters per second. The mixture is kept stirred and is pumped out at a rate of
4 liters per second. Find the amount of salt in the tank as a function of time.

Solution: Let y(t) be the amount of salt in the tank at t minutes. Then

dy

dt
= rate of incoming salt− rate of outgoing salt,

where

rate of incoming salt = (rate of incoming volume of brine)(incoming density)

= 5(0.02) = 0.1

and

rate of outgoing salt = (rate of outgoing volume of brine)(outgoing density)

= 4

(
y(t)

100 + (5− 4)t

)
=

4y(t)

100 + t
.

From here, we obtain the first order linear differential equation

dy

dt
= 0.1− 4

100 + t
y.

Solving this differential equation, we obtain

y(t) = 0.02(100 + t) + C(100 + t)−4.
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(Note: Don’t be tempted to expand (100 + t)4) With the initial condition y(0) =
100(0.05) = 5, we have C = 3(1004) = 3(108), so

y(t) = 0.02(100 + t) +
3(108)

(100 + t)4
grams.

6. Suppose that a population of rabbits on a meadow initially has size 10000 and natural
birth rate 10% per year. A pack of 20 wolves just migrated in recently and, as a result,
each wolf hunts for two rabbits each month for food. Suppose that the population of
wolves grows by 2 wolves/year. Set up a differential equation describing the population
of rabbits over time. Will the population of rabbits eventually flourish, stay the same,
or go extinct?

Solution: Let y(t) denotes the population of rabbits after t years. Then

dy

dt
= natural growth rate− rate of decrease

In this case, the decreasing rate of rabbits are determined by the hunting rate of
the wolves. After t years, the wolf population is 20 + 2t, so the rabbit population
decreases by a rate of 2(12)(20 + 2t) = 48(t+ 10). Hence, we have

dy

dt
= 0.1y − 48(t+ 10).

This is a first order linear differential equation. Solving for y, we obtain

y(t) = 48(10t+ 200) + Ce0.1t.

Using the initial condition y(0) = 5000, we have C = 400. Hence,

y(t) = 480t+ 9600 + 400e0.1t.

Since y′(t) = 480 + 40e0.1t > 0, the population of rabbits will keep increasing so it
will eventually flourishes.

7. Consider the differential equation

t2y′′ + 2ty′ − 2y = 0, t > 0

and assume that y1(t) = t is a solution. Use the reduction of order method to find a
second linearly independent solution.
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Solution: First, set y = u(t)t. Then

y′ = u+ tu′ and y′′ = tu′′ + 2u′.

Replacing y, y′ and y′′ in the differential equation, and collecting terms, we obtain

t2(tu′′ + 2u′) + 2t(u+ tu′)− 2(tu) = t3u′′ + 4t2u′ = 0.

Solving for u′, we find that u′ = ct−4. It follows that u = 1
−3ct

−3 + k, and hence

y = ut =
1

−3
ct−2 + kt

for arbitrary constants c and k. Notice that the second term on the right side
of the previous equation is a multiple of y1(t) and can be dropped, but the first
term provides a new independent solution. Neglecting the arbitrary multiplicative
constant, we have y2(t) = t−2.

8. Consider the differential equation

2t2y′′ + 3ty′ − y = 0, t > 0

and assume that y1(t) = t−1 is a solution. Use the reduction of order method to find a
second linearly independent solution.

Solution: First, set y = u(t)t−1. Then

y′ = u′t−1 − ut−2 and y′′ = u′′t−1 − 2u′t−2 + 2ut−3.

Replacing y, y′ and y′′ in the differential equation, and collecting terms, we obtain

2t2(u′′t−1 − 2u′t−2 + 2ut−3) + 3t(u′t−1 − ut−2)− (ut−1)

= 2tu′′ + (−4 + 3)u′ + (4t−1 − 3t−1 − t−1)u
= 2tu′′ − u′

= 0.

Solving for u′, we find that u′ = ct1/2. It follows that u = 2
3
ct3/2 + k, and hence

y = ut−1 =
2

3
ct1/2 + kt−1

for arbitrary constants c and k. Notice that the second term on the right side
of the previous equation is a multiple of y1(t) and can be dropped, but the first
term provides a new independent solution. Neglecting the arbitrary multiplicative
constant, we have y2(t) = t1/2.


