M20580 L.A. and D.E. Tutorial Worksheet 14

1. Find a homogeneous linear differential equation with constant coefficients whose general solution is
(a) $y=c_{1} e^{x}+c_{2} e^{5 x}$
(b) $y=c_{1}+c_{2} e^{2 x}$
(c) $y=c_{1} e^{-4 x}+c_{2} e^{-3 x}$
(d) $y=c_{1} \cos 3 x+c_{2} \sin 3 x$
(e) $y=c_{1} e^{10 x}+c_{2} x e^{10 x}$
(f) $y=c_{1} e^{-x} \cos x+c_{2} e^{-x} \sin x$

Solution:

(a) We have $(r-1)(r-5)=r^{2}-6 r+5$. So, the differential equation is $y^{\prime \prime}-6 y^{\prime}+5 y=$ 0.
(b) We have $r(r-2)=r^{2}-2 r$. So, the differential equation is $y^{\prime \prime}-2 y^{\prime}=0$.
(c) We have $(r+4)(r+3)=r^{2}+7 r+12$. So, the differential equation is $y^{\prime \prime}+7 y^{\prime}+$ $12 y=0$.
(d) We have $(r-3 i)(r+3 i)=r^{2}+9$. So, the differential equation is $y^{\prime \prime}+9 y=0$.
(e) We have $(r-10)^{2}=r^{2}-20 r+100$. So, the differential equation is $y^{\prime \prime}-20 y^{\prime}+$ $100 y=0$.
(f) We have $(r-(-1+i))(r-(-1-i))=r^{2}+2 r+2$. So, the differential equation is $y^{\prime \prime}+2 y^{\prime}+2 y=0$.
2. Use reduction of order to find a second solution to: $y^{\prime \prime}-4 y^{\prime}+4 y=0 ; y_{1}=e^{2 x}$.

Solution: Define $y=u(x) e^{2 x}$ so $y^{\prime}=2 u e^{2 x}+u^{\prime} e^{2 x}, y^{\prime \prime}=e^{2 x} u^{\prime \prime}+4 e^{2 x} u^{\prime}+4 e^{2 x} u$, and $y^{\prime \prime}-4 y^{\prime}+4 y=e^{2 x} u^{\prime \prime}=0$. Therefore $u^{\prime \prime}=0$ and $u=c_{1} x+c_{2}$. Taking $c_{1}=1$ and $c_{2}=0$ we see that a second solution is $y_{2}=x e^{2 x}$.
3. (i) Solve the initial-value problem: $4 y^{\prime \prime}-4 y^{\prime}-3 y=0, y(0)=1, y^{\prime}(0)=5$.
(ii) Using method of indeterminate coefficients find a particular solution of $4 y^{\prime \prime}-4 y^{\prime}-3 y=3 x-1$. (Hint: try linear function $A x+B$).
(iii) Find the general solution of the $4 y^{\prime \prime}-4 y^{\prime}-3 y=3 x-1$.

Solution: (i) The auxiliary equation is $4 r^{2}-4 r-3=0$ and the roots are $-1 / 2$ and $3 / 2$. So, the general solution is $y=c_{1} e^{-x / 2}+c_{2} e^{3 x / 2}$. Since $y(0)=1$ and $y^{\prime}(0)=5$, then $c_{1}+c_{2}=1$ and $(-1 / 2) c_{1}+(3 / 2) c_{2}=5$. Solving the linear system gives $c_{1}=-7 / 4$ and $c_{2}=11 / 4$. So, the solution to the IVP is $y=(-7 / 4) e^{-x / 2}+(11 / 4) e^{3 x / 2}$.
(ii) Plug in the function $\mathrm{Ax}+\mathrm{B}$ in the equation and search for coefficients A and B : $-4 A-3(A x+B)=3 x-1$. Thus, $-4 A-3 B=-1$ and $-3 A=-3$. Thiwc implies that $A=1$ and $B=\frac{5}{3}$. Thus, the particular solution is $-x+\frac{5}{3}$.
(iii) Thus, the general solution is $y=-x+5+c_{1} e^{-x / 2}+c_{2} e^{3 x / 2}$.
4. (i) Solve the initial-value problem: $4 y^{\prime \prime}-4 y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=2$.
(ii) Using method of indeterminate coefficients find a particular solution of $4 y^{\prime \prime}-4 y^{\prime}+y=-9 e^{2 x}$. (Hint: try linear function $A e^{2 x}$).
(iii) Find the general solution of the $4 y^{\prime \prime}-4 y^{\prime}+y=-9 e^{2 x}$.

Solution: (i) The auxiliary equation is $4 r^{2}-4 r+1=0$ and the root is $1 / 2$ of multiplicity 2 . So, the general solution is $y=c_{1} e^{x / 2}+c_{2} x e^{x / 2}$. Since $y(0)=1$ and $y^{\prime}(0)=2$, then $c_{1}+c_{2}=1$ and $(1 / 2) c_{1}+c_{2}=2$. Solving the linear system gives $c_{1}=-2$ and $c_{2}=3$. So, the solution to the IVP is $y=-2 e^{-x / 2}+3 e^{3 x / 2}$.
(ii) Plug in the function $A e^{2 x}$ in the equation and search for coefficient A: $16 A-$ $8 A+A=-9$ Thus, the particular solution is $-e^{2 x}$.
(iii) Thus, the general solution is $y=-e^{2 x}+-2 e^{-x / 2}+3 e^{3 x / 2}$.
5. (i) Solve the boundary value problem $y^{\prime \prime}-2 y^{\prime}+2 y=0, y(0)=1, y(\pi)=1$.
(ii) Using method of indeterminate coefficients find a particular solution of $y^{\prime \prime}-2 y^{\prime}+2 y=-\cos (x)$. (Hint: try linear function $A \sin (x)+B \cos (x)$).
(iii) Find the general solution of the $y^{\prime \prime}-2 y^{\prime}+2 y=-\cos (x)$.

Solution: The auxiliary equation is $r^{2}-2 r+2=0$ and the roots are $1 \pm i$. So, the general solution is $y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)$. Since $y(0)=1$ and $y(\pi)=1$, then we find that $c_{1}=1$ but we also find that $-e^{\pi}=1$ which is a contradiction. So, the BVP has no solution.
(ii) Plug in the function $A \sin (x)+B \cos (x)$ in the equation and search for coefficients A and B: $A+2 B=0$ and $B-2 A=-1$ Thus, the particular solution is $\frac{2}{5} \sin (x)-\frac{1}{5} \cos (x)$.
(iii) Thus, the general solution is $y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)+\frac{2}{5} \sin (x)-\frac{1}{5} \cos (x)$.
6. Suppose t and $\sin t$ are two solutions to the homogeneous differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

Use variation of parameters to find a solution to the non-homogeneous differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=t \cos t-\sin t .
$$

Hint: method of variation of parameters suggests to look for solutions of the form $y_{1} u_{1}(t)+y_{2} u_{2}(t)$, where y_{1} and y_{2} is FSS. These functions could be found from the following:

$$
u_{1}(t)=\int-\frac{g(t) y_{2}(t)}{W\left(y_{1}, y_{2}\right)} d t
$$

and

$$
u_{2}(t)=\int \frac{g(t) y_{1}(t)}{W\left(y_{1}, y_{2}\right)} d t
$$

Solution:

Here $y_{1}=t, y_{2}=\sin t$ and $g=t \cos t-\sin t$.
The Wronskian is $W\left(y_{1}, y_{2}\right)=\left|\begin{array}{cc}t & \sin t \\ 1 & \cos t\end{array}\right|=t \cos t-\sin t=g(t)$.
Hence

$$
u_{1}(t)=\int-\frac{g(t) y_{2}(t)}{W\left(y_{1}, y_{2}\right)} d t=\int-\sin t d t=\cos t
$$

and

$$
u_{2}(t)=\int \frac{g(t) y_{1}(t)}{W\left(y_{1}, y_{2}\right)} d t=\int t d t=\frac{1}{2} t^{2}
$$

So this method gives the particular solution

$$
y_{p}=u_{1} y_{1}+u_{2} y_{2}=t \cos t+\frac{1}{2} t^{2} \sin t
$$

7. Solve the differential equation $x y^{\prime \prime}+2 y^{\prime}+x y=0$. (Hint: consider $u=x y$)

Solution: As is, the equation can be classified as second order linear homogeneous with nonconstant coefficients, but it can be rewritten as $(x y)^{\prime \prime}+(x y)=0$. Solving, we find $x y=c_{1} \cos x+c_{2} \sin x$, and hence

$$
y=c_{1} \frac{\cos x}{x}+c_{2} \frac{\sin x}{x} .
$$

