Math 20580 L.A. and D.E. Tutorial Worksheet 4

1. Given the matrix $A = \begin{bmatrix} 1 & -1 & -2 & -3 \\ -1 & 1 & 1 & 2 \\ -1 & 1 & -1 & 12 \end{bmatrix}$, find a basis for Row(A), Col(A), Null(A).

What are dimensions of Row(A), Col(A) and Null(A)?

Hint: the first step is to row reduce A. Then, the non-zero rows will form a basis of Row(A), and pivots will indicate which columns of A form a basis of Col(A) (but we do not pick columns of a REF of A for a basis of Col(A)!). For Null(A), augment A by zero and solve the resulting system.

Solution: Row reduce A $\begin{bmatrix} 1 & -1 & -2 & -3 \\ -1 & 1 & 1 & 2 \\ -1 & 1 & -1 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & -3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & -3 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & -2 & -3 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 12 \end{bmatrix}.$ We see that a basis for Row(A) is $\{[1 - 1 - 2 - 3], [0 \ 0 - 1 \ 5], [0 \ 0 \ 0 \ 12]\}$. Thus, dimension of Row(A) is 3, which is number of nonzero rows in REF of A. A basis for Col(A) can be chosen as the first, the third and the forth columns of A: $\left\{ \begin{bmatrix} 1\\-1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} -2\\1\\-1\\-1 \end{bmatrix} \begin{bmatrix} -3\\2\\12 \end{bmatrix} \right\}.$ Dimension of the Col(A) is 3, same as for Row(A). Thus, dimension of Null(A) is 4-3=1 (Rank Thm), or you can find it from a basis of Null(A). For the null space, augment A by zero and solve $\begin{bmatrix} 1 & -1 & -2 & -3 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 12 & 0 \end{bmatrix}$. The solution is: $\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = x_2 \cdot \begin{vmatrix} 1 \\ 1 \\ 0 \\ 0 \end{vmatrix}$ Therefore, a basis for Null(A) can be chosen as $\begin{cases} 1 \\ 0 \end{cases}$

2. Let
$$\mathbf{b_1} = \begin{bmatrix} -6\\ 1 \end{bmatrix}$$
, $\mathbf{b_2} = \begin{bmatrix} 3\\ -1 \end{bmatrix}$; $\mathbf{c_1} = \begin{bmatrix} 1\\ -4 \end{bmatrix}$, $\mathbf{c_2} = \begin{bmatrix} 3\\ -5 \end{bmatrix}$ be two bases for \mathbb{R}^2 , find $P_{\mathcal{C} \leftarrow \mathcal{B}}$.

Solution: To solve two systems simultaneously, augment the coefficient matrix by $\mathbf{b_1}$ and $\mathbf{b_2}$:

$$\begin{bmatrix} 1 & 3 & | & -6 & 3 \\ -4 & -5 & | & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & \frac{27}{7} & \frac{-12}{7} \\ 0 & 1 & | & \frac{-23}{7} & \frac{11}{7} \end{bmatrix}$$
$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} & \frac{27}{7} & \frac{-12}{7} \\ & \frac{-23}{7} & \frac{11}{7} \end{bmatrix}.$$

3. Let \mathcal{B} denote the basis of \mathbb{R}^3 given by $\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\-1 \end{bmatrix} \right\}$ and let \mathbf{v} denote the vector $\mathbf{v} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$. Find the coordinates $[\mathbf{v}]_{\mathcal{B}}$ of \mathbf{v} with respect to \mathcal{B} .

Solution:

We have to solve the linear system with augmented matrix

$$\begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 1 & 0 & 2 & | & 1 \\ 1 & -1 & -1 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & -1 & 3 & | & 1 \\ 0 & -2 & 0 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & -2 & 0 & | & 0 \\ 0 & -1 & 3 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -1 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 1/3 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 1/3 \end{bmatrix} .$$

Therefore $[\mathbf{v}]_{\mathcal{B}}$ is $\begin{bmatrix} 1/3 \\ 0 \\ 1/3 \end{bmatrix}$.

4. Suppose that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathcal{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$ are two bases for \mathbb{R}^2 . Also suppose that the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} is given as $P_{\mathcal{C}\leftarrow\mathcal{B}} = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$. For $\mathbf{v} = \mathbf{b}_1 - 3\mathbf{b}_2$, what is $[\mathbf{v}]_{\mathcal{C}}$, the \mathcal{C} -coordinate for \mathbf{v} ?

Solution:

$$\mathbf{v} = \mathbf{b}_1 - 3\mathbf{b}_2$$
 means that $[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$.
So
 $[\mathbf{v}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \ [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$.

5. Find C if $\mathcal{B} = \left\{ \begin{bmatrix} 0\\3 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$ from Question 4.

Solution:

We want to find the vectors $\mathbf{c}_1, \mathbf{c}_2$ in standard coordinates. Here are two solutions: *Solution 1*: Perhaps you started by interpreting what the change-of-coordinate matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is doing. The matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ tells us that

• $\mathbf{b}_1 = 3\mathbf{c}_1 + 5\mathbf{c}_2$, and

(Reason:
$$[\mathbf{b}_1]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} [\mathbf{b}_1]_{\mathcal{B}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 3\\5 \end{bmatrix}$$
.)

• $\mathbf{b}_2 = \mathbf{c}_1 + 2\mathbf{c}_2$.

(Reason: $[\mathbf{b}_2]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}} [\mathbf{b}_2]_{\mathcal{B}} = P_{\mathcal{C} \leftarrow \mathcal{B}} \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix}$.)

Now this is not super helpful since we are given $\mathbf{b}_1, \mathbf{b}_2$ and we are trying to find $\mathbf{c}_1, \mathbf{c}_2$, but the inverse of $P_{\mathcal{C}\leftarrow\mathcal{B}}$, which is the change-of-coordinate matrix $P_{\mathcal{B}\leftarrow\mathcal{C}}$ from \mathcal{C} to \mathcal{B} , will give us $\mathbf{c}_1, \mathbf{c}_2$ as linear combinations of $\mathbf{b}_1, \mathbf{b}_2$, i.e.

$$\mathbf{c}_1 = ?\mathbf{b}_1 + ?\mathbf{b}_2$$
 and $\mathbf{c}_2 = ?\mathbf{b}_1 + ?\mathbf{b}_2$.

We compute the inverse of $P_{\mathcal{C}\leftarrow\mathcal{B}}$:

$$(P_{\mathcal{C}\leftarrow\mathcal{B}})^{-1} = \begin{bmatrix} 3 & 1\\ 5 & 2 \end{bmatrix}^{-1} = \frac{1}{3(2) - 1(5)} \begin{bmatrix} 2 & -1\\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1\\ -5 & 3 \end{bmatrix}.$$

Therefore,

•
$$\mathbf{c}_1 = 2\mathbf{b}_1 - 5\mathbf{b}_2 = 2\begin{bmatrix}0\\3\end{bmatrix} - 5\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}-5\\1\end{bmatrix}$$

• $\mathbf{c}_2 = -\mathbf{b}_1 + 3\mathbf{b}_2 = -1\begin{bmatrix}0\\3\end{bmatrix} + 3\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}3\\0\end{bmatrix}$

Solution 2: We know that $[\mathbf{c}_1]_{\mathcal{C}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and that $\mathbf{c}_1 = [\mathbf{c}_1]_{std} = P_{std\leftarrow\mathcal{C}} \ [\mathbf{c}_1]_{\mathcal{C}}$, so we would be almost done if we could find the change-of-coordinate matrix $P_{std\leftarrow\mathcal{C}}$ from \mathcal{C} to std.

Since $\mathcal{B} = \left\{ \begin{bmatrix} 0\\3 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$, we have the change-of-coordinate matrix from \mathcal{B} to *std*:

$$P_{\mathrm{std}\leftarrow\mathcal{B}} = \begin{bmatrix} 0 & 1\\ 3 & 1 \end{bmatrix}$$

We are also given the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} :

$$P_{\mathcal{C}\leftarrow\mathcal{B}} = \left[\begin{array}{cc} 3 & 1\\ 5 & 2 \end{array}\right].$$

So,

$$P_{\mathrm{std}\leftarrow\mathcal{C}} = P_{\mathrm{std}\leftarrow\mathcal{B}} \ P_{\mathcal{B}\leftarrow\mathcal{C}} = P_{\mathrm{std}\leftarrow\mathcal{B}} \ (P_{\mathcal{C}\leftarrow\mathcal{B}})^{-1}$$

We compute the inverse of $P_{\mathcal{C}\leftarrow\mathcal{B}}$:

$$(P_{\mathcal{B}\leftarrow\mathcal{C}})^{-1} = \begin{bmatrix} 3 & 1\\ 5 & 2 \end{bmatrix}^{-1} = \frac{1}{3(2) - 1(5)} \begin{bmatrix} 2 & -1\\ -5 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -1\\ -5 & 3 \end{bmatrix}.$$

Now we can compute $P_{\mathrm{std}\leftarrow\mathcal{C}}$:

$$P_{\mathrm{std}\leftarrow\mathcal{C}} = P_{\mathrm{std}\leftarrow\mathcal{B}} \ \left(P_{\mathcal{C}\leftarrow\mathcal{B}}\right)^{-1} = \begin{bmatrix} 0 & 1\\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1\\ -5 & 3 \end{bmatrix} = \begin{bmatrix} -5 & 3\\ 1 & 0 \end{bmatrix}.$$

Finally, we can find \mathbf{c}_1 :

$$\mathbf{c}_1 = P_{\mathrm{std}\leftarrow\mathcal{C}} \ [\mathbf{c}_1]_{\mathcal{C}} = \begin{bmatrix} -5 & 3\\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1\\ 0 \end{bmatrix} = \begin{bmatrix} -5\\ 1 \end{bmatrix},$$

which is the first column of $P_{\mathrm{std}\leftarrow\mathcal{C}}$.

Similarly, \mathbf{c}_2 is

$$\mathbf{c}_2 = P_{\mathrm{std}\leftarrow\mathcal{C}} \ [\mathbf{c}_2]_{\mathcal{C}} = \begin{bmatrix} -5 & 3\\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} 3\\ 0 \end{bmatrix}.$$

which is the second column of $P_{\mathrm{std}\leftarrow\mathcal{C}}$.

6. Consider the basis $\mathcal{B} = \left\{ \begin{bmatrix} -3\\3\\-3 \end{bmatrix}, \begin{bmatrix} 3\\2\\3 \end{bmatrix}, \begin{bmatrix} 0\\2\\1 \end{bmatrix} \right\}$ for \mathbb{R}^3 . If $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$, find \mathbf{x} .

Solution: $\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \text{ means that the coordinates of } \mathbf{x} \text{ relative to the } \mathcal{B} \text{ basis is } \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \text{ so}$ $\mathbf{x} = -1 \cdot \begin{bmatrix} -3 \\ 3 \\ -3 \end{bmatrix} + 2 \cdot \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix} + 1 \cdot \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \\ 10 \end{bmatrix}.$