Math 20580 L.A. and D.E. Tutorial
 Worksheet 4

1. Given the matrix $A=\left[\begin{array}{cccc}1 & -1 & -2 & -3 \\ -1 & 1 & 1 & 2 \\ -1 & 1 & -1 & 12\end{array}\right]$, find a basis for $\operatorname{Row}(A), \operatorname{Col}(A), \operatorname{Null}(A)$. What are dimensions of $\operatorname{Row}(\mathrm{A}), \operatorname{Col}(\mathrm{A})$ and $\operatorname{Null}(\mathrm{A})$?

Hint: the first step is to row reduce A. Then, the non-zero rows will form a basis of Row(A), and pivots will indicate which columns of A form a basis of $\operatorname{Col}(\mathrm{A})$ (but we do not pick columns of a REF of A for a basis of $\operatorname{Col}(A)!$). For Null(A), augment A by zero and solve the resulting system.

Solution: Row reduce A

$$
\left[\begin{array}{cccc}
1 & -1 & -2 & -3 \\
-1 & 1 & 1 & 2 \\
-1 & 1 & -1 & 12
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -1 & -2 & -3 \\
0 & 0 & -1 & -1 \\
0 & 0 & -3 & 9
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -1 & -2 & -3 \\
0 & 0 & -1 & -1 \\
0 & 0 & 0 & 12
\end{array}\right]
$$

We see that a basis for $\operatorname{Row}(\mathrm{A})$ is $\left.\left\{\begin{array}{llll}1 & -1 & -2 & -3\end{array}\right],\left[\begin{array}{llll}0 & 0 & -1 & 5\end{array}\right],\left[\begin{array}{llll}0 & 0 & 0 & 12\end{array}\right]\right\}$. Thus, dimension of $\operatorname{Row}(\mathrm{A})$ is 3 , which is number of nonzero rows in REF of A. A basis for $\operatorname{Col}(\mathrm{A})$ can be chosen as the first, the third and the forth columns of A : $\left\{\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right],\left[\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right]\left[\begin{array}{c}-3 \\ 2 \\ 12\end{array}\right]\right\}$.

Dimension of the $\operatorname{Col}(A)$ is 3 , same as for $\operatorname{Row}(A)$. Thus, dimension of $\operatorname{Null}(A)$ is $4-3=1$ (Rank Thm), or you can find it from a basis of Null(A). For the null space, augment A by zero and solve $\left[\begin{array}{cccc|c}1 & -1 & -2 & -3 & 0 \\ 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 12 & 0\end{array}\right]$. The solution is:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{2} \cdot\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Therefore, a basis for $\operatorname{Null}(\mathrm{A})$ can be chosen as $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}$.
2. Let $\mathbf{b}_{\mathbf{1}}=\left[\begin{array}{c}-6 \\ 1\end{array}\right], \mathbf{b}_{\mathbf{2}}=\left[\begin{array}{c}3 \\ -1\end{array}\right] ; \mathbf{c}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -4\end{array}\right], \mathbf{c}_{\mathbf{2}}=\left[\begin{array}{c}3 \\ -5\end{array}\right]$ be two bases for \mathbb{R}^{2}, find $P_{\mathcal{C} \leftarrow \mathcal{B}}$.

Solution: To solve two systems simultaneously, augment the coefficient matrix by b_{1} and b_{2} :

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
1 & 3 & -6 & 3 \\
-4 & -5 & 1 & -1
\end{array}\right] \sim\left[\begin{array}{cc|cc}
1 & 0 & \frac{27}{7} & \frac{-12}{7} \\
0 & 1 & \frac{-23}{7} & \frac{11}{7}
\end{array}\right]} \\
& P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{cc}
\frac{27}{7} & \frac{-12}{7} \\
\frac{-23}{7} & \frac{11}{7}
\end{array}\right] .
\end{aligned}
$$

3. Let \mathcal{B} denote the basis of \mathbb{R}^{3} given by $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]\right\}$ and let \mathbf{v} denote the vector $\mathbf{v}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Find the coordinates $[\mathbf{v}]_{\mathcal{B}}$ of \mathbf{v} with respect to \mathcal{B}.

Solution:

We have to solve the linear system with augmented matrix
$\left[\begin{array}{ccc|c}1 & 1 & -1 & 0 \\ 1 & 0 & 2 & 1 \\ 1 & -1 & -1 & 0\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 1 & -1 & 0 \\ 0 & -1 & 3 & 1 \\ 0 & -2 & 0 & 0\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 1 & -1 & 0 \\ 0 & -2 & 0 & 0 \\ 0 & -1 & 3 & 1\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 1 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 3 & 1\end{array}\right]$
$\sim\left[\begin{array}{ccc|c}1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 1\end{array}\right] \sim\left[\begin{array}{ccc|c}1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 / 3\end{array}\right] \sim\left[\begin{array}{lll|l}1 & 0 & 0 & 1 / 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 / 3\end{array}\right]$.
Therefore $[\mathbf{v}]_{\mathcal{B}}$ is $\left[\begin{array}{c}1 / 3 \\ 0 \\ 1 / 3\end{array}\right]$.
4. Suppose that $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ are two bases for \mathbb{R}^{2}. Also suppose that the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} is given as $P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right]$. For $\mathbf{v}=\mathbf{b}_{1}-3 \mathbf{b}_{2}$, what is $[\mathbf{v}]_{\mathcal{C}}$, the \mathcal{C}-coordinate for \mathbf{v} ?

Solution:

$\mathbf{v}=\mathbf{b}_{1}-3 \mathbf{b}_{2}$ means that $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{r}1 \\ -3\end{array}\right]$.
So

$$
[\mathbf{v}]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]\left[\begin{array}{r}
1 \\
-3
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1
\end{array}\right] .
$$

5. Find \mathcal{C} if $\mathcal{B}=\left\{\left[\begin{array}{l}0 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ from Question 4 .

Solution:

We want to find the vectors $\mathbf{c}_{1}, \mathbf{c}_{2}$ in standard coordinates. Here are two solutions:
Solution 1: Perhaps you started by interpreting what the change-of-coordinate matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ is doing. The matrix $P_{\mathcal{C} \leftarrow \mathcal{B}}$ tells us that

- $\mathbf{b}_{1}=3 \mathbf{c}_{1}+5 \mathbf{c}_{2}$, and
(Reason: $\left[\mathbf{b}_{1}\right]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}\left[\mathbf{b}_{1}\right]_{\mathcal{B}}=P_{\mathcal{C} \leftarrow \mathcal{B}}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}3 \\ 5\end{array}\right]$.)
- $\mathbf{b}_{2}=\mathbf{c}_{1}+2 \mathbf{c}_{2}$.
(Reason: $\left[\mathbf{b}_{2}\right]_{\mathcal{C}}=P_{\mathcal{C} \leftarrow \mathcal{B}}\left[\mathbf{b}_{2}\right]_{\mathcal{B}}=P_{\mathcal{C} \leftarrow \mathcal{B}}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.)
Now this is not super helpful since we are given $\mathbf{b}_{1}, \mathbf{b}_{2}$ and we are trying to find $\mathbf{c}_{1}, \mathbf{c}_{2}$, but the inverse of $P_{\mathcal{C} \leftarrow \mathcal{B}}$, which is the change-of-coordinate matrix $P_{\mathcal{B} \leftarrow \mathcal{C}}$ from \mathcal{C} to \mathcal{B}, will give us $\mathbf{c}_{1}, \mathbf{c}_{2}$ as linear combinations of $\mathbf{b}_{1}, \mathbf{b}_{2}$, i.e.

$$
\mathbf{c}_{1}=? \mathbf{b}_{1}+? \mathbf{b}_{2} \quad \text { and } \quad \mathbf{c}_{2}=? \mathbf{b}_{1}+? \mathbf{b}_{2} .
$$

We compute the inverse of $P_{\mathcal{C} \leftarrow \mathcal{B}}$:

$$
\left(P_{\mathcal{C} \leftarrow \mathcal{B}}\right)^{-1}=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]^{-1}=\frac{1}{3(2)-1(5)}\left[\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right] .
$$

Therefore,

- $\mathbf{c}_{1}=2 \mathbf{b}_{1}-5 \mathbf{b}_{2}=2\left[\begin{array}{l}0 \\ 3\end{array}\right]-5\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{c}-5 \\ 1\end{array}\right]$.
- $\mathbf{c}_{2}=-\mathbf{b}_{1}+3 \mathbf{b}_{2}=-1\left[\begin{array}{l}0 \\ 3\end{array}\right]+3\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 0\end{array}\right]$.

Solution 2: We know that $\left[\mathbf{c}_{1}\right]_{\mathcal{C}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and that $\mathbf{c}_{1}=\left[\mathbf{c}_{1}\right]_{s t d}=P_{\mathrm{std} \leftarrow \mathcal{C}}\left[\mathbf{c}_{1}\right]_{\mathcal{C}}$, so we would be almost done if we could find the change-of-coordinate matrix $P_{\text {std } \leftarrow \mathcal{C}}$ from \mathcal{C} to $s t d$.
Since $\mathcal{B}=\left\{\left[\begin{array}{l}0 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$, we have the change-of-coordinate matrix from \mathcal{B} to $s t d$:

$$
P_{\mathrm{std} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
0 & 1 \\
3 & 1
\end{array}\right] .
$$

We are also given the change-of-coordinate matrix from \mathcal{B} to \mathcal{C} :

$$
P_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right] .
$$

So,

$$
P_{\operatorname{std} \leftarrow \mathcal{C}}=P_{\operatorname{std} \leftarrow \mathcal{B}} P_{\mathcal{B} \leftarrow \mathcal{C}}=P_{\mathrm{std} \leftarrow \mathcal{B}}\left(P_{\mathcal{C} \leftarrow \mathcal{B}}\right)^{-1}
$$

We compute the inverse of $P_{\mathcal{C} \leftarrow \mathcal{B}}$:

$$
\left(P_{\mathcal{B} \leftarrow \mathcal{C}}\right)^{-1}=\left[\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right]^{-1}=\frac{1}{3(2)-1(5)}\left[\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right] .
$$

Now we can compute $P_{\text {std } \leftarrow \mathcal{C}}$:

$$
P_{\mathrm{std} \leftarrow \mathcal{C}}=P_{\mathrm{std} \leftarrow \mathcal{B}}\left(P_{\mathcal{C} \leftarrow \mathcal{B}}\right)^{-1}=\left[\begin{array}{ll}
0 & 1 \\
3 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-5 & 3
\end{array}\right]=\left[\begin{array}{cc}
-5 & 3 \\
1 & 0
\end{array}\right] .
$$

Finally, we can find \mathbf{c}_{1} :

$$
\mathbf{c}_{1}=P_{\mathrm{std} \leftarrow \mathcal{C}}\left[\mathbf{c}_{1}\right]_{\mathcal{C}}=\left[\begin{array}{cc}
-5 & 3 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-5 \\
1
\end{array}\right]
$$

which is the first column of $P_{\text {std } \leftarrow \mathcal{C}}$.
Similarly, \mathbf{c}_{2} is

$$
\mathbf{c}_{2}=P_{\mathrm{std} \leftarrow \mathcal{C}}\left[\mathbf{c}_{2}\right]_{\mathcal{C}}=\left[\begin{array}{cc}
-5 & 3 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right],
$$

which is the second column of $P_{\text {std } \leftarrow \mathcal{C}}$.
6. Consider the basis $\mathcal{B}=\left\{\left[\begin{array}{c}-3 \\ 3 \\ -3\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right]\right\}$ for \mathbb{R}^{3}. If $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$, find \mathbf{x}.

Solution:

$[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$ means that the coordinates of \mathbf{x} relative to the \mathcal{B} basis is $\left[\begin{array}{c}-1 \\ 2 \\ 1\end{array}\right]$, so

$$
\mathbf{x}=-1 \cdot\left[\begin{array}{c}
-3 \\
3 \\
-3
\end{array}\right]+2 \cdot\left[\begin{array}{l}
3 \\
2 \\
3
\end{array}\right]+1 \cdot\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
9 \\
3 \\
10
\end{array}\right] .
$$

