M20580 L.A. and D.E. Tutorial
 Worksheet 6

1. Consider the basis $\mathcal{B}=\left\{M_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], M_{2}=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right], M_{3}=\left[\begin{array}{cc}1 & -1 \\ -1 & 0\end{array}\right], M_{4}=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\right\}$ of $\mathcal{M}_{2 \times 2}$. Find the coordinate vector of $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 8\end{array}\right]$ with respect to \mathcal{B}, i.e. the vector $[A]_{\mathcal{B}}=\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that $A=a M_{1}+b M_{2}+c M_{3}+d M_{4}$.

Solution: (First method) Consider the equation

$$
\left[\begin{array}{ll}
2 & 3 \\
5 & 8
\end{array}\right]=A=a M_{1}+b M_{2}+c M_{3}+d M_{4}=\left[\begin{array}{cc}
a+b+c+d & -b-c-d \\
-c-d & d
\end{array}\right] .
$$

Then $d=8, c=-13, b=2$, and $a=5$. Thus

$$
[A]_{\mathcal{B}}=\left[\begin{array}{c}
5 \\
2 \\
-13 \\
8
\end{array}\right]
$$

(Second method) Recall that

$$
\left[\begin{array}{ll}
2 & 3 \\
5 & 8
\end{array}\right]=A=a M_{1}+b M_{2}+c M_{3}+d M_{4}=\left[\begin{array}{cc}
a+b+c+d & -b-c-d \\
-c-d & d
\end{array}\right] .
$$

This equivalents to the following system of equations

$$
\left\{\begin{aligned}
a+b+c+d & =2 \\
-b-c-d & =3 \\
-c-d & =5 \\
d & =8
\end{aligned}\right.
$$

That is we have the augmented matrix

$$
\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 2 \\
0 & -1 & -1 & -1 & 3 \\
0 & 0 & -1 & -1 & 5 \\
0 & 0 & 0 & 1 & 8
\end{array}\right]
$$

Thus $d=8, c=-13, b=2$, and $a=5$.
2. In each of the following, V is a vector space and W is a subset of V. Determine if W is a subspace of V. Justify your answer.
(a) $V=\mathbb{R}^{3}$ and $W=\left\{\left.\left[\begin{array}{c}u \\ -\pi u \\ 0\end{array}\right] \right\rvert\, u \in \mathbb{R}\right\}$,
(b) $V=\mathcal{P}_{3}$ and $W=\left\{a+b x+c x^{2}+d x^{3} \mid a b=c d\right\}$,
(c) $V=\mathcal{M}_{2 \times 2}(\mathbb{R})$ and $W=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbb{R}, a d \geq 0\right\}$.

Solution:

(a) Since $W=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ -\pi \\ 0\end{array}\right]\right\}$, it is a subspace.
(b) Consider $p(x)=1$ and $q(x)=x$. We have $p(x), q(x) \in W$ but $p(x)+q(x)=$ $1+x \notin W$. Hence, W is not a subspace.
(c) Consider $p=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $q=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$. We have $p, q \in W$ but $p+q=$ $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \notin W$. Thus W is not a subspace.

Recall A vector space is a nonempty set V with objects vectors and two operations, addition and multiplication by scalars, such that for any $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and scalar c and d

1. $\mathbf{u}+\mathbf{v} \in V \quad$ (cloesure under addition)
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \quad$ (commutativity of addition)
3. $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w} \quad$ (associativity of addition)
4. there exists an element $\mathbf{0}$ in V, the zero vector such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$
5. for any $\mathbf{u} \in V$ there exists an element $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
6. $c \mathbf{u} \in V \quad$ (closure under scalar multiplication)
7. $c(d \mathbf{u})=(c d) \mathbf{u} \quad$ (associativity of scalar multiplication)
8. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v} \quad$ (distributivity)
9. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u} \quad$ (distributivity)
10. $1 \mathbf{u}=\mathbf{u}$.
11. Let $M=\left\{f(x)=a e^{2 x}+b e^{-2 x} \mid a, b \in \mathbb{R}\right\}$. Define $T: M \rightarrow \mathbb{R}^{2}$ by

$$
T(f(x))=\left[\begin{array}{c}
f(0) \\
f^{\prime}(0)
\end{array}\right]
$$

(a) Show that M is a vector space with the usual addition and scalar multiplication.
(b) Show that T is a linear transformation.
(c) Find the kernel and range of T. Show that M is isomorphic to \mathbb{R}^{2}.

Solution:

(a) For $i=1,2,3$, let $f_{i}=a_{i} e^{2 x}+b_{i} e^{-2 x} \in M$ and c, d be scalar. Then

1. $f_{1}+f_{2}=\left(a_{1}+a_{2}\right) e^{2 x}+\left(b_{1}+b_{2}\right) e^{-2 x} \in M$
2. $f_{1}+f_{2}=\left(a_{1}+a_{2}\right) e^{2 x}+\left(b_{1}+b_{2}\right) e^{-2 x}=\left(a_{2}+a_{1}\right) e^{2 x}+\left(b_{2}+b_{2}\right) e^{-2 x}=f_{2}+f_{1}$
3.

$$
\begin{aligned}
f_{1}+\left(f_{2}+f_{3}\right) & =\left(a_{1}+\left(a_{2}+a_{3}\right)\right) e^{2 x}+\left(b_{1}+\left(b_{2}+b_{3}\right)\right) e^{-2 x} \\
& =\left(\left(a_{1}+a_{2}\right)+a_{3}\right) e^{2 x}+\left(\left(b_{1}+b_{2}\right)+b_{3}\right) e^{-2 x} \\
& =\left(f_{1}+f_{2}\right)+f_{3}
\end{aligned}
$$

4. consider $\mathbf{0}=0$ Then $f_{1}+\mathbf{0}=f_{1}+0=f_{1}$
5. consider $f_{1}+\left(-f_{1}\right)=f_{1}-f_{1}=0=\mathbf{0}$
6. $c f_{1}=c a_{1} e^{2 x}+c b_{1} e^{-2 x} \in M$
7. $c\left(d f_{1}\right)=c\left(d a_{1} e^{2 x}+d b_{1} e^{-2 x}\right)=c d a_{1} e^{2 x}+c d b_{1} e^{-2 x}=(c d) f_{1}$
8. $c\left(f_{1}+f_{2}\right)=c\left(a_{1}+b_{1}\right) e^{2 x}+c\left(b_{1}+b_{2}\right) e^{-2 x}=c f_{1}+c f_{2}$
9. $(c+d) f_{1}=(c+d) a_{1} e^{2 x}+(c+d) b_{1} e^{-2 x}=c f_{1}+d f_{1}$
10. $1 f_{1}=f_{1}$.
(b) Let $c \in \mathbb{R}$ and $f(x), g(x) \in M$.

$$
T(c f(x)+g(x))=\left[\begin{array}{c}
c f(0)+g(0) \\
c f^{\prime}(0)+g^{\prime}(0)
\end{array}\right]=c T(f(x))+T(g(x)) .
$$

Then T is linear.
(c) Let $f(x)=a e^{2 x}+b e^{-2 x}$. Then

$$
T(f(x))=\left[\begin{array}{c}
a+b \\
2 a-2 b
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right] .
$$

Since

$$
\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right] \sim\left[\begin{array}{cc}
1 & 1 \\
0 & -4
\end{array}\right],
$$

then $\operatorname{Ker}(T)=\{0\}$ and $\operatorname{Range}(T)=\mathbb{R}^{2}$. Then T is a bijective linear transformation from M to \mathbb{R}^{2}. Hence M is isomorphic to \mathbb{R}^{2}.
4. Determine whether the set \mathcal{B} is a basis for the vector space V.
(a) $\mathcal{B}=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\right\}$ and $V=\mathcal{M}_{2 \times 2}$.
(b) $\mathcal{B}=\left\{\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$ and $V=\left\{A \in \mathcal{M}_{2 \times 2} \mid A^{T}=A\right\}$,
(c) $\mathcal{B}=\left\{1+x^{2}, 1+2 x+3 x^{2}\right\}$ and $V=\left\{a+b x+c x^{2} \mid a+b=c\right.$ and $\left.a, b, c \in \mathbb{R}\right\}$

Solution:

(a) Note that $\operatorname{dim}(V)=4$. We will show that \mathcal{B} is linearly dependent. Consider

$$
\mathbf{0}=a\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right]+d\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
a+d & a+b \\
c+d & b+c
\end{array}\right]
$$

We have the following system of equations

$$
\left\{\begin{array}{l}
a+d=0 \\
a+b=0 \\
c+d=0 \\
b+c=0
\end{array} .\right.
$$

That is we have the augmented matrix

$$
\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll|l}
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{cccc|c}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Thus, \mathcal{B} is not a basis.
(b) Note that $A^{T}=A$ implies that $A=\left[\begin{array}{ll}a & c \\ c & b\end{array}\right]$ where $a, b, c \in \mathbb{R}$, i.e. $\operatorname{dim}(V)=3$.

We will show that \mathcal{B} is linearly independent. Consider

$$
\mathbf{0}=a\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]+b\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]+c\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 a-b & c \\
c & 2 b-a
\end{array}\right]
$$

Then $c=0$ and the following augmented matrix for a and b

$$
\left[\begin{array}{cc|c}
2 & -1 & 0 \\
-1 & 2 & 0
\end{array}\right] \sim\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 1.5 & 0
\end{array}\right]
$$

Thus, \mathcal{B} is a basis for V.
(c) Note that for any $f(x)=a+b x+c x^{2} \in V$, we have $f(x)=a+b x+(a+b) x^{2}=$ $a+a x^{2}+b x+b x^{2}$ where $a, b \in \mathbb{R}$, i.e. $\operatorname{dim}(V)=2$. Consider

$$
0=a\left(1+x^{2}\right)+b\left(1+2 x+3 x^{2}\right)=a+b+2 b x+(a+3 b) x^{2} .
$$

Then $b=0$ and $a=0$. Thus \mathcal{B} is a basis for V.
5. Let $\mathcal{E}=\left\{e^{2 x}, e^{-2 x}\right\}$ and $M=\left\{f(x)=a e^{2 x}+b e^{-2 x} \mid a, b \in \mathbb{R}\right\}=\operatorname{span} \mathcal{E}$. Consider a basis $\mathcal{B}=\{\sinh (2 x), \cosh (2 x)\}$ of M, where

$$
\sinh (2 x)=\frac{e^{2 x}-e^{-2 x}}{2}, \quad \cosh (2 x)=\frac{e^{2 x}+e^{-2 x}}{2}
$$

(a) Find the change of basis matrix $P_{\mathcal{E} \leftarrow \mathcal{B}}$.
(b) Find the matrices $[D]_{\mathcal{E}}$ and $[D]_{\mathcal{B}}$ of the linear transformation $D: M \rightarrow M$ given by $D(f(x))=f^{\prime \prime}(x)$.

Solution:

(a) In terms of \mathcal{E}, the basis \mathcal{B} is

$$
\mathcal{B}=\left\{\left[\begin{array}{c}
1 / 2 \\
-1 / 2
\end{array}\right],\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]\right\} .
$$

Then the change of basis matrix

$$
P_{\mathcal{E} \leftarrow \mathcal{B}}=\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right] .
$$

(b) Recall that

$$
[D]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{E}}[D]_{\mathcal{E}} P_{\mathcal{E} \leftarrow \mathcal{B}}
$$

We have

$$
\left(P_{\mathcal{E} \leftarrow \mathcal{B}}\right)^{-1}=P_{\mathcal{B} \leftarrow \mathcal{E}}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

Now, the operator D acts upon $e^{2 x}$ and $e^{-2 x}$ as

$$
D\left(e^{2 x}\right)=4 e^{2 x}, \quad D\left(e^{-2 x}\right)=4 e^{-2 x} .
$$

Then

$$
[D]_{\mathcal{E}}=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]
$$

Thus,

$$
[D]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{E}}[D]_{\mathcal{E}} P_{\mathcal{E} \leftarrow \mathcal{B}}=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right] .
$$

