M20580 L.A. and D.E. Tutorial Worksheet 7

1. Let T be the linear transformation from \mathbb{R}^{3} to \mathbb{R}^{2} defined by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-x_{2} \\
x_{3}+2 x_{2}
\end{array}\right]
$$

(a) What is the matrix of T with respect to the standard bases for \mathbb{R}^{3} and \mathbb{R}^{2}.
(b) If $B=\left\{\overrightarrow{\alpha_{1}}, \overrightarrow{\alpha_{2}}, \overrightarrow{\alpha_{3}}\right\}$ and $\mathcal{C}=\left\{\overrightarrow{\beta_{1}}, \overrightarrow{\beta_{2}}\right\}$, where

$$
\overrightarrow{\alpha_{1}}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right], \quad \overrightarrow{\alpha_{2}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \overrightarrow{\alpha_{3}}=\left[\begin{array}{c}
0 \\
0 \\
-1
\end{array}\right], \quad \overrightarrow{\beta_{1}}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \overrightarrow{\beta_{2}}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right],
$$

what is the matrix of $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$.

Solution: (a) Since $T\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{l}1 \\ 0\end{array}\right], T\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}-1 \\ 2\end{array}\right], T\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$, then the matrix of T is $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 1\end{array}\right]$.
(b) First, $T\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{c}-2 \\ 2\end{array}\right]=2 \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]+4 \cdot\left[\begin{array}{c}-1 \\ 0\end{array}\right]$. Next, $T\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
$=1 \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]+0 \cdot\left[\begin{array}{c}-1 \\ 0\end{array}\right]$. Lastly, $T\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]=\left[\begin{array}{c}0 \\ -1\end{array}\right]=-1\left[\begin{array}{l}1 \\ 1\end{array}\right]-1\left[\begin{array}{c}-1 \\ 0\end{array}\right]$. So,
$[T]_{\mathcal{C} \leftarrow \mathcal{B}}$ is $\left[\begin{array}{lll}2 & 1 & -1 \\ 4 & 0 & -1\end{array}\right]$
2. Define a linear transformation $T: \mathcal{P}_{2} \rightarrow \mathbb{R}^{2}$ via

$$
T(p(x))=\left[\begin{array}{l}
p(0) \\
p(1)
\end{array}\right]
$$

Let $\mathcal{B}=\left\{1,1+x, x+x^{2}\right\}$ be another basis for \mathcal{P}_{2} and $\mathcal{C}=\left\{\left[\begin{array}{l}2 \\ -1\end{array}\right],\left[\begin{array}{l}5 \\ -3\end{array}\right]\right\}$ be another basis for \mathbb{R}^{2}. Compute $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$
Hint: you may want to start with $[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[[T(1)]_{\mathcal{C}}:[T(1+x)]_{\mathcal{C}} \vdots\left[T\left(x+x^{2}\right)\right]_{\mathcal{C}}\right]$; for this approach, you will also need to compute $P_{\mathcal{C} \leftarrow \mathcal{E}}$. Another, more computationally demanding way would be to use the formula $[T]_{\mathcal{C} \leftarrow \mathcal{B}}=P_{\mathcal{C} \leftarrow \mathcal{E}}[T]_{\mathcal{E} \leftarrow \mathcal{E}} P_{\mathcal{E} \leftarrow \mathcal{B}}$.

Solution: The matrix $P_{\mathcal{C} \leftarrow \mathcal{E}}$ is given by

$$
P_{\mathcal{C} \leftarrow \mathcal{E}}=\left[\begin{array}{ll}
2 & 5 \\
-1 & -3
\end{array}\right]^{-1}=\left[\begin{array}{cc}
3 & 5 \\
-1 & -2
\end{array}\right]
$$

so

$$
\begin{gathered}
{[T(1)]_{\mathcal{C}}=\left[\begin{array}{cc}
3 & 5 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
8 \\
-3
\end{array}\right]} \\
{[T(1+x)]_{\mathcal{C}}=\left[\begin{array}{cc}
3 & 5 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
13 \\
-5
\end{array}\right]} \\
{\left[T\left(x+x^{2}\right)\right]_{\mathcal{C}}=\left[\begin{array}{cc}
3 & 5 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
10 \\
-4
\end{array}\right] .}
\end{gathered}
$$

Thus

$$
[T]_{\mathcal{C} \leftarrow \mathcal{B}}=\left[\begin{array}{ccc}
8 & 13 & 10 \\
-3 & -5 & -4
\end{array}\right]
$$

3. Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ be a linear transformation defined by

$$
T(\mathbf{A}):=\mathbf{A} \mathbf{W}_{\mathbf{0}}-\mathbf{W}_{\mathbf{0}} \mathbf{A}, \quad \text { where } \quad \mathbf{W}_{\mathbf{0}}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

a) Find the matrix $[T]_{\mathcal{E}}$ of T in the standard basis

$$
\mathcal{E}=\left\{\mathbf{E}_{1}:=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], \mathbf{E}_{2}:=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \mathbf{E}_{3}:=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \mathbf{E}_{4}:=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

b) Consider a basis \mathcal{B} in $M_{2 \times 2}$ given by

$$
\mathcal{B}:=\left\{\mathbf{B}_{1}:=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right], \mathbf{B}_{2}:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \mathbf{B}_{3}:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \mathbf{B}_{4}:=\left[\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right]\right\} .
$$

Compute $[T]_{\mathcal{B}}$
c) Use $[T]_{\mathcal{B}}$ to compute the null space of T.

Hint: for part b), it would be easier if instead of using the formula $[T]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{E}}[T]_{\mathcal{E}} P_{\mathcal{E} \leftarrow \mathcal{B}}$ you use $[T]_{\mathcal{B}}=\left[\left[T\left(\mathbf{B}_{1}\right)\right]_{\mathcal{B}} \vdots\left[T\left(\mathbf{B}_{\mathbf{2}}\right)\right]_{\mathcal{B}} \vdots\left[T\left(\mathbf{B}_{\mathbf{3}}\right)\right]_{\mathcal{B}} \vdots\left[T\left(\mathbf{B}_{4}\right)\right]_{\mathcal{B}}\right]$. I.e., try acting by T upon the matrices from \mathcal{B}, see how the outputs can be expressed as linear combinations of \mathcal{B}, and collect the coefficients into the columns of $[T]_{\mathcal{B}}$. Once you learn a bit more about linear algebra, you'll be able to see that \mathcal{B} is a so-called eigen-basis of T.

Solution: The action of T upon $\mathbf{A}=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ is given by

$$
T(\mathbf{A})=\left[\begin{array}{ll}
a_{12} & a_{11} \\
a_{22} & a_{21}
\end{array}\right]-\left[\begin{array}{ll}
a_{21} & a_{22} \\
a_{11} & a_{12}
\end{array}\right]=\left[\begin{array}{cc}
a_{12}-a_{21} & a_{11}-a_{22} \\
a_{22}-a_{11} & a_{21}-a_{12}
\end{array}\right] .
$$

Therefore, the matrix of T in \mathcal{E} is

$$
[T]_{\mathcal{E}}=\left[\begin{array}{cccc}
0 & -1 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

Now, let's find $[T]_{\mathcal{B}}$ via $[T]_{\mathcal{B}}=\left[\left[T\left(\mathbf{B}_{\mathbf{1}}\right)\right]_{\mathcal{B}}:\left[T\left(\mathbf{B}_{\mathbf{2}}\right)\right]_{\mathcal{B}}:\left[T\left(\mathbf{B}_{\mathbf{3}}\right)\right]_{\mathcal{B}} \vdots\left[T\left(\mathbf{B}_{\mathbf{4}}\right)\right]_{\mathcal{B}}\right]$:

$$
T\left(\mathbf{B}_{1}\right)=-2 \mathbf{B}_{\mathbf{1}}, \quad T\left(\mathbf{B}_{\mathbf{2}}\right)=0 \cdot \mathbf{B}_{\mathbf{2}}, \quad T\left(\mathbf{B}_{\mathbf{3}}\right)=0 \cdot \mathbf{B}_{\mathbf{3}}, \quad T\left(\mathbf{B}_{\mathbf{4}}\right)=2 \mathbf{B}_{\mathbf{4}} .
$$

Hence

$$
[T]_{\mathcal{B}}=\left[\begin{array}{cccc}
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

Now, the null space of T can be easily read off from $[T]_{\mathcal{B}}$:

$$
\operatorname{null}(T)=\operatorname{span}\left\{\mathbf{B}_{\mathbf{2}}, \mathbf{B}_{\mathbf{3}}\right\}
$$

4. Let $\mathbf{A}=\left[\begin{array}{ccc}0 & 1 & -1 \\ 2 & 3 & -2 \\ -1 & 3 & 0\end{array}\right]$.
(a) Compute the first column of the cofactor matrix associated to \mathbf{A}.
(b) Using part (a) compute the determinant of \mathbf{A}.

Solution: (a) We compute C_{11}, C_{21}, and C_{31}.

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} \operatorname{det}\left(\left[\begin{array}{cc}
3 & -2 \\
3 & 0
\end{array}\right]\right)=(-1)^{1+1}((3)(0)-(-2)(3))=6 . \\
& C_{21}=(-1)^{2+1} \operatorname{det}\left(\left[\begin{array}{cc}
1 & -1 \\
3 & 0
\end{array}\right]\right)=(-1)^{2+1}((1)(0)-(-1)(3))=-3 . \\
& C_{31}=(-1)^{3+1} \operatorname{det}\left(\left[\begin{array}{ll}
1 & -1 \\
3 & -2
\end{array}\right]\right)=(-1)^{3+1}((1)(-2)-(-1)(3))=1 .
\end{aligned}
$$

(b) Using expansion along the first column, the determinant is $0 C_{11}+2 C_{21}-1 C_{31}=$ $0(6)+2(-3)-1(1)=-7$.
5. Consider the matrix $\mathbf{A}=\left[\begin{array}{ccc}t & -t & 0 \\ 6 & 5 t & t^{2} \\ 0 & t & -t\end{array}\right]$, where t is some real number.
(a) Find the determinant of \mathbf{A}.
(b) Find all values of t for which \mathbf{A} is invertible. (Recall that a square matrix \mathbf{A} is invertible if and only if $\operatorname{det}(\mathbf{A}) \neq 0$.)

Solution: (a) Computing a cofactor expansion along the first row yields:

$$
\begin{aligned}
\operatorname{det}(\mathbf{A}) & =t\left|\begin{array}{cc}
5 t & t^{2} \\
t & -t
\end{array}\right|-(-t)\left|\begin{array}{cc}
6 & t^{2} \\
0 & -t
\end{array}\right| \\
& =t\left(-5 t^{2}-t^{3}\right)+t(-6 t) \\
& =-t^{4}-5 t^{3}-6 t^{2} .
\end{aligned}
$$

(b) We need to find the roots of $-t^{4}-5 t^{3}-6 t^{2}$. Factoring, we have

$$
-t^{4}-5 t^{3}-6 t^{2}=-t^{2}\left(t^{2}+5 t+6\right)=-t^{2}(t+2)(t+3)
$$

The roots are $0,-2,-3$. So, \mathbf{A} is invertible when $t \neq 0,-2,-3$.
6. Use Cramer's rule to find a solution to the following system of equations:

$$
\begin{array}{r}
x+y-z=1 \\
x+y+z=2 \\
x-y=3
\end{array}
$$

Solution: We can write the above equation in matrix form as follows:

$$
\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 1 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Replacing the first column with the vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, we obtain: $\left[\begin{array}{ccc}1 & 1 & -1 \\ 2 & 1 & 1 \\ 3 & -1 & 0\end{array}\right]$. This matrix has determinant 9 . The original matrix has determinant 4 . So $x=\frac{9}{4}$ Replacing the second column with the vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, we obtain: $\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 2 & 1 \\ 1 & 3 & 0\end{array}\right]$. This matrix has determinant -3 . The original matrix has determinant 4. So $y=-\frac{3}{4}$
Replacing the third column with the vector $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$, we obtain: $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & -1 & 3\end{array}\right]$. This matrix has determinant 2. The original matrix has determinant 4. So $z=\frac{2}{4}=\frac{1}{2}$
Finally, we can check that $\left[\begin{array}{c}\frac{9}{4} \\ -\frac{3}{4} \\ \frac{1}{2}\end{array}\right]$ is a solution: $\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{c}\frac{9}{4} \\ -\frac{3}{4} \\ \frac{1}{2}\end{array}\right]=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.

