M20580 L.A. and D.E. Tutorial Worksheet 7

1. Let T be the linear transformation from \mathbb{R}^3 to \mathbb{R}^2 defined by

$$T\left(\left[\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right]\right) = \left[\begin{array}{c} x_1 - x_2\\ x_3 + 2x_2 \end{array}\right].$$

(a) What is the matrix of T with respect to the standard bases for \mathbb{R}^3 and \mathbb{R}^2 .

(b) If
$$B = \{\vec{\alpha_1}, \vec{\alpha_2}, \vec{\alpha_3}\}$$
 and $C = \{\vec{\beta_1}, \vec{\beta_2}\}$, where
 $\vec{\alpha_1} = \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \quad \vec{\alpha_2} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \quad \vec{\alpha_3} = \begin{bmatrix} 0\\0\\-1 \end{bmatrix}, \quad \vec{\beta_1} = \begin{bmatrix} 1\\1 \end{bmatrix}, \quad \vec{\beta_2} = \begin{bmatrix} -1\\0 \end{bmatrix},$

what is the matrix of $[T]_{\mathcal{C}\leftarrow\mathcal{B}}$.

Solution: (a) Since
$$T\begin{bmatrix} 1\\0\\0\\0\end{bmatrix} = \begin{bmatrix} 1\\0\\0\end{bmatrix}, T\begin{bmatrix} 0\\1\\0\\0\end{bmatrix} = \begin{bmatrix} -1\\2\\0\end{bmatrix}, T\begin{bmatrix} 0\\0\\1\\0\end{bmatrix} = \begin{bmatrix} 0\\1\\0\end{bmatrix}$$
, then
the matrix of T is $\begin{bmatrix} 1 & -1 & 0\\0&2 & 1\\\end{bmatrix}$.
(b) First, $T\begin{bmatrix} -1\\1\\0\\0\\0\\-1\end{bmatrix} = \begin{bmatrix} -2\\2\\0\end{bmatrix} = 2 \cdot \begin{bmatrix} 1\\1\\1\end{bmatrix} + 4 \cdot \begin{bmatrix} -1\\0\\0\\-1\end{bmatrix}$. Next, $T\begin{bmatrix} 1\\0\\1\\0\\1\end{bmatrix} = \begin{bmatrix} 1\\1\\1\end{bmatrix}$
 $= \begin{bmatrix} 1\\1\\1\end{bmatrix} = 1 \begin{bmatrix} 1\\1\\0\end{bmatrix}$.
 $= 1 \cdot \begin{bmatrix} 1\\1\\1\end{bmatrix} + 0 \cdot \begin{bmatrix} -1\\0\\0\\-1\end{bmatrix}$. Lastly, $T\begin{bmatrix} 0\\0\\-1\\0\end{bmatrix} = \begin{bmatrix} 0\\-1\\1\end{bmatrix} = -1\begin{bmatrix} 1\\1\\1\end{bmatrix} - 1\begin{bmatrix} -1\\0\\0\end{bmatrix}$. So,
 $[T]_{\mathcal{C}\leftarrow\mathcal{B}}$ is $\begin{bmatrix} 2&1&-1\\4&0&-1\end{bmatrix}$.

$$T(p(x)) = \left[\begin{array}{c} p(0)\\ p(1) \end{array}\right]$$

Let $\mathcal{B} = \{1, 1 + x, x + x^2\}$ be another basis for \mathcal{P}_2 and $\mathcal{C} = \left\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \begin{bmatrix} 5 \\ -3 \end{bmatrix} \right\}$ be another basis for \mathbb{R}^2 . Compute $[T]_{\mathcal{C} \leftarrow \mathcal{B}}$

Hint: you may want to start with $[T]_{\mathcal{C}\leftarrow\mathcal{B}} = \left[[T(1)]_{\mathcal{C}} \vdots [T(1+x)]_{\mathcal{C}} \vdots [T(x+x^2)]_{\mathcal{C}} \right];$ for this approach, you will also need to compute $P_{\mathcal{C}\leftarrow\mathcal{E}}$. Another, more computationally demanding way would be to use the formula $[T]_{\mathcal{C}\leftarrow\mathcal{B}} = P_{\mathcal{C}\leftarrow\mathcal{E}}[T]_{\mathcal{E}\leftarrow\mathcal{E}}P_{\mathcal{E}\leftarrow\mathcal{B}}.$

Solution: The matrix $P_{\mathcal{C}\leftarrow\mathcal{E}}$ is given by

$$P_{\mathcal{C}\leftarrow\mathcal{E}} = \left[\begin{array}{cc} 2 & 5\\ -1 & -3 \end{array}\right]^{-1} = \left[\begin{array}{cc} 3 & 5\\ -1 & -2 \end{array}\right]$$

 \mathbf{SO}

$$[T(1)]_{\mathcal{C}} = \begin{bmatrix} 3 & 5\\ -1 & -2 \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} = \begin{bmatrix} 8\\ -3 \end{bmatrix}$$
$$[T(1+x)]_{\mathcal{C}} = \begin{bmatrix} 3 & 5\\ -1 & -2 \end{bmatrix} \begin{bmatrix} 1\\ 2 \end{bmatrix} = \begin{bmatrix} 13\\ -5 \end{bmatrix}$$
$$[T(x+x^2)]_{\mathcal{C}} = \begin{bmatrix} 3 & 5\\ -1 & -2 \end{bmatrix} \begin{bmatrix} 0\\ 2 \end{bmatrix} = \begin{bmatrix} 10\\ -4 \end{bmatrix}.$$

Thus

$$[T]_{\mathcal{C}\leftarrow\mathcal{B}} = \left[\begin{array}{rrrr} 8 & 13 & 10\\ -3 & -5 & -4 \end{array}\right]$$

3. Let $T: M_{2\times 2} \to M_{2\times 2}$ be a linear transformation defined by

$$T(\mathbf{A}) := \mathbf{A}\mathbf{W}_{\mathbf{0}} - \mathbf{W}_{\mathbf{0}}\mathbf{A}, \quad \text{where} \quad \mathbf{W}_{\mathbf{0}} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

a) Find the matrix $[T]_{\mathcal{E}}$ of T in the standard basis

$$\mathcal{E} = \left\{ \mathbf{E_1} := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \mathbf{E_2} := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \mathbf{E_3} := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{E_4} := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

b) Consider a basis \mathcal{B} in $M_{2\times 2}$ given by

$$\mathcal{B} := \left\{ \mathbf{B_1} := \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}, \mathbf{B_2} := \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \mathbf{B_3} := \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \mathbf{B_4} := \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \right\}.$$

Compute $[T]_{\mathcal{B}}$

c) Use $[T]_{\mathcal{B}}$ to compute the null space of T.

Hint: for part b), it would be easier if instead of using the formula $[T]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{E}}[T]_{\mathcal{E}}P_{\mathcal{E}\leftarrow\mathcal{B}}$ you use $[T]_{\mathcal{B}} = \left[[T(\mathbf{B_1})]_{\mathcal{B}} \vdots [T(\mathbf{B_2})]_{\mathcal{B}} \vdots [T(\mathbf{B_3})]_{\mathcal{B}} \vdots [T(\mathbf{B_4})]_{\mathcal{B}} \right]$. I.e., try acting by T upon the matrices from \mathcal{B} , see how the outputs can be expressed as linear combinations of \mathcal{B} , and collect the coefficients into the columns of $[T]_{\mathcal{B}}$. Once you learn a bit more about linear algebra, you'll be able to see that \mathcal{B} is a so-called eigen-basis of T.

Solution: The action of T upon
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 is given by
$$T(\mathbf{A}) = \begin{bmatrix} a_{12} & a_{11} \\ a_{22} & a_{21} \end{bmatrix} - \begin{bmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{bmatrix} = \begin{bmatrix} a_{12} - a_{21} & a_{11} - a_{22} \\ a_{22} - a_{11} & a_{21} - a_{12} \end{bmatrix}$$

Therefore, the matrix of T in \mathcal{E} is

$$[T]_{\mathcal{E}} = \begin{bmatrix} 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \end{bmatrix}$$

Now, let's find $[T]_{\mathcal{B}}$ via $[T]_{\mathcal{B}} = \begin{bmatrix} [T(\mathbf{B_1})]_{\mathcal{B}} \vdots [T(\mathbf{B_2})]_{\mathcal{B}} : [T(\mathbf{B_3})]_{\mathcal{B}} \vdots [T(\mathbf{B_4})]_{\mathcal{B}} \end{bmatrix}$:
 $T(\mathbf{B_1}) = -2\mathbf{B_1}, \quad T(\mathbf{B_2}) = 0 \cdot \mathbf{B_2}, \quad T(\mathbf{B_3}) = 0 \cdot \mathbf{B_3}, \quad T(\mathbf{B_4}) = 2\mathbf{B_4}.$

Hence

Now, the null space of T can be easily read off from $[T]_{\mathcal{B}}$:

$$\operatorname{null}(T) = \operatorname{span} \left\{ \mathbf{B}_2, \mathbf{B}_3 \right\}$$

4. Let
$$\mathbf{A} = \begin{bmatrix} 0 & 1 & -1 \\ 2 & 3 & -2 \\ -1 & 3 & 0 \end{bmatrix}$$
.

(a) Compute the first column of the cofactor matrix associated to A.

(b) Using part (a) compute the determinant of **A**.

Solution: (a) We compute C_{11}, C_{21} , and C_{31} . $C_{11} = (-1)^{1+1} \det \left(\begin{bmatrix} 3 & -2 \\ 3 & 0 \end{bmatrix} \right) = (-1)^{1+1} ((3)(0) - (-2)(3)) = 6.$ $C_{21} = (-1)^{2+1} \det \left(\begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix} \right) = (-1)^{2+1} ((1)(0) - (-1)(3)) = -3.$ $C_{31} = (-1)^{3+1} \det \left(\begin{bmatrix} 1 & -1 \\ 3 & -2 \end{bmatrix} \right) = (-1)^{3+1} ((1)(-2) - (-1)(3)) = 1.$

(b) Using expansion along the first column, the determinant is $0C_{11} + 2C_{21} - 1C_{31} = 0(6) + 2(-3) - 1(1) = -7$.

5. Consider the matrix
$$\mathbf{A} = \begin{bmatrix} t & -t & 0 \\ 6 & 5t & t^2 \\ 0 & t & -t \end{bmatrix}$$
, where t is some real number.

(a) Find the determinant of **A**.

(b) Find all values of t for which **A** is invertible. (Recall that a square matrix **A** is invertible if and only if $det(\mathbf{A}) \neq 0$.)

Solution: (a) Computing a cofactor expansion along the first row yields:

$$det(\mathbf{A}) = t \begin{vmatrix} 5t & t^2 \\ t & -t \end{vmatrix} - (-t) \begin{vmatrix} 6 & t^2 \\ 0 & -t \end{vmatrix}$$
$$= t (-5t^2 - t^3) + t (-6t)$$
$$= -t^4 - 5t^3 - 6t^2.$$

(b) We need to find the roots of $-t^4 - 5t^3 - 6t^2$. Factoring, we have

$$-t^{4} - 5t^{3} - 6t^{2} = -t^{2} \left(t^{2} + 5t + 6\right) = -t^{2} (t+2)(t+3).$$

The roots are 0, -2, -3. So, **A** is invertible when $t \neq 0, -2, -3$.

6. Use Cramer's rule to find a solution to the following system of equations:

$$x + y - z = 1$$
$$x + y + z = 2$$
$$x - y = 3$$

 $\pmb{Solution:}$ We can write the above equation in matrix form as follows:

$\begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$
Replacing the first column with the vector $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, we obtain: $\begin{bmatrix} 1 & 1 & -1\\2 & 1 & 1\\3 & -1 & 0 \end{bmatrix}$. This matrix has determinant 4. So $x = \frac{9}{4}$
Replacing the second column with the vector $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, we obtain: $\begin{bmatrix} 1 & 1 & -1\\1 & 2 & 1\\1 & 3 & 0 \end{bmatrix}$. This matrix has determinant -3. The original matrix has determinant 4. So $y = -\frac{3}{4}$
Replacing the third column with the vector $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$, we obtain: $\begin{bmatrix} 1 & 1 & 1\\1 & 1 & 2\\1 & -1 & 3 \end{bmatrix}$. This matrix has determinant 2. The original matrix has determinant 4. So $z = \frac{2}{4} = \frac{1}{2}$
Finally, we can check that $\begin{bmatrix} \frac{9}{4} \\ -\frac{3}{4} \\ \frac{1}{2} \end{bmatrix}$ is a solution: $\begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{9}{4} \\ -\frac{3}{4} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.