M20580 L.A. and D.E. Tutorial Worksheet 8

1. For both parts (a) and (b) of this problem, show that \mathbf{v} is an eigenvector of A and find the corresponding eigenvalue
(a) $A=\left[\begin{array}{cc}-1 & 1 \\ 6 & 0\end{array}\right], \mathbf{v}=\left[\begin{array}{c}1 \\ -2\end{array}\right]$
(b) $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 1 & -2 \\ 1 & 0 & 1\end{array}\right], \mathbf{v}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$

Solution: (a) Recall that \mathbf{v} is an eigenvector of A if there exists a $\lambda \in \mathbb{R}$ such that $A \mathbf{v}=\lambda \mathbf{v}$. So we just need to apply A to \mathbf{v} to figure out what the λ is.

$$
A \mathbf{v}=\left[\begin{array}{cc}
-1 & 1 \\
6 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-3 \\
6
\end{array}\right]=-3 \cdot\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=-3 \cdot \mathbf{v}
$$

thus \mathbf{v} is an eigenvector with $\lambda=-3$.
(b) Recall that \mathbf{v} is an eigenvector of A if there exists a $\lambda \in \mathbb{R}$ such that $A \mathbf{v}=\lambda \mathbf{v}$. So we just need to apply A to \mathbf{v} to figure out what the λ is.

$$
A \mathbf{v}=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 1 & -2 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
-3 \\
3
\end{array}\right]=3 \cdot\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=3 \cdot \mathbf{v}
$$

thus \mathbf{v} is an eigenvector with $\lambda=3$.
2. For both parts (a) and (b) of this problem, show that λ is an eigenvalue of A and find at least one corresponding eigenvector.
(a) $A=\left[\begin{array}{cc}2 & 2 \\ 2 & -1\end{array}\right], \lambda=3$
(b) $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 1 \\ 2 & 0 & 1\end{array}\right], \lambda=-1$

Solution: (a) We start by finding the matrix $A-\lambda I$:

$$
A-\lambda I=A-3 I=\left[\begin{array}{cc}
-1 & 2 \\
2 & -4
\end{array}\right]
$$

The REF of $A-3 I$ is:

$$
\left[\begin{array}{cc}
-1 & 2 \\
0 & 0
\end{array}\right]
$$

This tells us that a vector of the form $\mathbf{v}=s\left[\begin{array}{l}2 \\ 1\end{array}\right]$, where $s \in \mathbb{R}$, is in the null space of $A-3 I$ and is thus an eigenvector of the matrix A with eigenvalue $\lambda=3$.
(b) We start by finding the matrix $A-\lambda I$:

$$
A-\lambda I=A+I=\left[\begin{array}{ccc}
2 & 0 & 2 \\
-1 & 2 & 1 \\
2 & 0 & 2
\end{array}\right]
$$

The REF of $A+I$ is:

$$
\left[\begin{array}{lll}
2 & 0 & 2 \\
0 & 2 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

This tells us that a vector of the form $\mathbf{v}=s\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$, where $s \in \mathbb{R}$, is in the null space of $A+I$ and is thus an eigenvector of the matrix A with eigenvalue $\lambda=-1$.
3. Consider the following matrices:

$$
A=\left[\begin{array}{cc}
1 & 3 \\
-2 & 6
\end{array}\right], B=\left[\begin{array}{ccc}
4 & 0 & 1 \\
2 & 3 & 2 \\
-1 & 0 & 2
\end{array}\right]
$$

For each matrix given, go through the following steps:
i. Find the characteristic polynomial
ii. Determine the eigenvalues with corresponding algebraic multiplicities
iii. Find a basis for the eigenspace of each eigenvalue
iv. Determine the geometric multiplicity of each eigenvalue

Solution: For matrix A, we start by finding the characteristic polynomial:

$$
\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
1-\lambda & 3 \\
-2 & 6-\lambda
\end{array}\right|=(1-\lambda)(6-\lambda)+6=(\lambda-4)(\lambda-3)
$$

This immediately gives us that the eigenvalues are 3 and 4 with both having algebraic multiplicity 1 . We now find the eigenvectors by finding the null space of $A-\lambda I$ with $\lambda=3,4$.

$$
\begin{aligned}
& A-3 I=\left[\begin{array}{ll}
-2 & 3 \\
-2 & 3
\end{array}\right] \\
& A-4 I=\left[\begin{array}{ll}
-3 & 3 \\
-2 & 2
\end{array}\right]
\end{aligned}
$$

One can immediately see that the null space of $A-3 I$ (i.e. the eigenspace of $\lambda=3$) is spanned by $\left[\begin{array}{l}3 \\ 2\end{array}\right]$ which tells us that the geometric multiplicity of $\lambda=3$ is 1 . Furthermore, the eigenspace of $\lambda=4$ is clearly spanned by $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ so it too has a geometric multiplicity of 1 .

For matrix B, we start by finding the characteristic polynomial:

$$
\operatorname{det}(B-\lambda I)=\left|\begin{array}{ccc}
4-\lambda & 0 & 1 \\
2 & 3-\lambda & 2 \\
-1 & 0 & 2-\lambda
\end{array}\right|=(4-\lambda)(3-\lambda)(2-\lambda)+(3-\lambda)=(3-\lambda)^{3}
$$

This immediately gives us that the only eigenvalue is 3 with an algebraic multiplicity of 3 . We now find the eigenvectors by finding the null space of $A-3 I$.

$$
A-3 I=\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & 0 & 2 \\
-1 & 0 & -1
\end{array}\right]
$$

One can immediately see that the null space of $A-3 I$ (i.e. the eigenspace of $\lambda=3$) is spanned by $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ which tells us that the geometric multiplicity of $\lambda=3$ is 2 .
4. Explain why the following matrices are not similar (Hint: recall that if two matrices are similar their characteristic polynomials must be equal).
(a) $A=\left[\begin{array}{cc}2 & 1 \\ -4 & 6\end{array}\right], B=\left[\begin{array}{cc}3 & -1 \\ -5 & 7\end{array}\right]$
(b) $A=\left[\begin{array}{lll}2 & 1 & 4 \\ 0 & 2 & 3 \\ 0 & 0 & 4\end{array}\right], B=\left[\begin{array}{ccc}1 & 0 & 0 \\ -1 & 4 & 0 \\ 2 & 3 & 4\end{array}\right]$

Solution: (a) We show that the characteristic polynomials are not equal.

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
2-\lambda & 1 \\
-4 & 6-\lambda
\end{array}\right|=(2-\lambda)(6-\lambda)+4=\lambda^{2}-8 \lambda+16 \\
\neq & \lambda^{2}-10 \lambda+16=(3-\lambda)(7-\lambda)-5=\left|\begin{array}{cc}
3-\lambda & -1 \\
-5 & 7-\lambda
\end{array}\right|=\operatorname{det}(B-\lambda I)
\end{aligned}
$$

Therefore, the two matrices cannot be similar.
(b) Based on what you have learned in class, you should immediately see that these are triangular matrices; therefore, their characteristic polynomials are just the products along the diagonal.

$$
\operatorname{det}(A-\lambda I)=(2-\lambda)^{2}(4-\lambda) \neq(1-\lambda)(4-\lambda)^{2}=\operatorname{det}(B-\lambda I)
$$

Since their characteristic polynomials are not equal, we get that the two matrices cannot be similar
5. Consider the matrix:

$$
A=\left[\begin{array}{cc}
-1 & 6 \\
1 & 0
\end{array}\right]
$$

and follow these steps:
i. Find the characteristic polynomial and determine the eigenvalues
ii. Find a basis for each eigenspace corresponding to each eigenvalue
iii. Find the matrices P and D such that D is diagonal and $A=P D P^{-1}$
iv. Find P^{-1} and explicity compute $P D P^{-1}$ to confirm it is equal to A.

Solution: We start by finding the characteristic polynomial:

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\left|\begin{array}{cc}
-1-\lambda & 6 \\
1 & -\lambda
\end{array}\right|=\lambda(1+\lambda)-6 \\
& =(\lambda-2)(\lambda+3)
\end{aligned}
$$

So we have 2 distinct eigenvalues: $2,-3$. Since A is a 2×2 matrix with 2 distinct eigenvalues, we know by theorem 4.25 in the book that A is diagonalizable, and by theorem 4.27 that each eigenspace will be spanned by a single vector, i.e. the null space of $A-\lambda I$ will be spanned by a single vector. Recalling that we denote eigenspaces by E_{λ}, we now find each of these vectors in turn:

$$
\begin{aligned}
& A-2 I=\left[\begin{array}{cc}
-3 & 6 \\
1 & -2
\end{array}\right] \Rightarrow E_{2}=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} \\
& A+3 I=\left[\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right] \Rightarrow E_{-3}=\operatorname{span}\left\{\left[\begin{array}{c}
3 \\
-1
\end{array}\right]\right\}
\end{aligned}
$$

We now need to construct the P and D matrices. Recall that P is just the change of basis matrix from the basis of eigenvectors to the standard basis. We can then think of D as the transformation matrix in the basis of eigenvectors. In other words, denoting the basis of eigenvectors $\mathcal{C}=\left\{\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{w}=\left[\begin{array}{c}3 \\ -1\end{array}\right]\right\}$ (remember: the order of the basis vectors matters here), we have:

$$
\begin{aligned}
& P=\left[\begin{array}{ll}
{[\mathbf{v}]_{\mathcal{E}}} & {[\mathbf{w}]_{\mathcal{E}}}
\end{array}\right]=\left[\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right] \\
& D=\left[\begin{array}{ll}
{[A \mathbf{v}]_{\mathcal{C}}} & {[A \mathbf{w}]_{\mathcal{C}}}
\end{array}\right]=\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right]
\end{aligned}
$$

Recalling that the inverse of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is $\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$, we get:

$$
P^{-1}=-\frac{1}{5}\left[\begin{array}{cc}
-1 & -3 \\
-1 & 2
\end{array}\right]
$$

and you should verify that we do get:

$$
A=-\frac{1}{5}\left[\begin{array}{cc}
2 & 3 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right]\left[\begin{array}{cc}
-1 & -3 \\
-1 & 2
\end{array}\right]
$$

6. Consider the transformation $\mathcal{D}: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ which takes a polynomial $p(x)$ to $p^{\prime}(x)$.
i. Find the matrix of this transformation in the basis $\left\{1, x, x^{2}\right\}$.
ii. Find the characteristic polynomial and determine the eigenvalues along with their algebraic multiplicities.
iii. Find a basis for each eigenspace and determine the geometric multiplicities.
iv. Determine if the matrix of the transformation is diagonalizable.

Solution: Calling the matrix of the transformation A, we have that:

$$
A=\left[\begin{array}{lll}
\mathcal{D}(1) & \mathcal{D}(x) & \mathcal{D}\left(x^{2}\right)
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Given that this is a triangular matrix, it is easy to see that:

$$
\operatorname{det}(A-\lambda I)=-\lambda^{3}
$$

From which we get that the only eigenvalue is 0 and its algebraic multiplicity is 3 .
Since $A-0 \cdot I=A$ and A is already in REF, we immediately see that:

$$
E_{0}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\}
$$

From which it follows that the geometric multiplicity of 0 is 1 .
By theorem 4.27 in the book, we know that if A is diagonalizable it must be that for each eigenvalue the algebraic multiplicity must be equal to the geometric multiplicity; however, we have only one eigenvalue with geometric multiplicity strictly less than algebraic multiplicity. It follows that A is not diagonalizable.

