M20580 L.A. and D.E. Tutorial Worksheet 9

1. Find a diagonalization of the following matrix

$$
A=\left[\begin{array}{ll}
2 & 5 \\
4 & 3
\end{array}\right] .
$$

Solution: We have the characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-5 \lambda-14=(\lambda+2)(\lambda-7)
$$

Thus the eigenvalues are $-2,7$. Next, we are going to find eigenvectors \mathbf{v}_{1} and \mathbf{v}_{2} that associate with $\lambda_{1}=-2$ and $\lambda_{2}=7$, respectively. Since $(A+2 I)$ has REF

$$
\left[\begin{array}{ll}
4 & 5 \\
0 & 0
\end{array}\right],
$$

one can choose $\mathbf{v}_{1}=\left[\begin{array}{c}5 \\ -4\end{array}\right]$. Similarly, since $(A-7 I)$ has REF

$$
\left[\begin{array}{cc}
-5 & 5 \\
0 & 0
\end{array}\right]
$$

we can choose $\mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Hence

$$
A=P D P^{-1}
$$

where

$$
P=\left[\begin{array}{cc}
5 & 1 \\
-4 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
-2 & 0 \\
0 & 7
\end{array}\right]
$$

2. Find all eigenvalues and a eigenvector for each eigenvalue of the following matrices
(a) $A=\left[\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right]$

Solution: The characteristic equation is

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-2 \lambda+5
$$

Then the eigenvalues are

$$
\lambda=\frac{2 \pm \sqrt{4-20}}{2}=1 \pm 2 i .
$$

The REF of $A-(1+2 i) I$ is

$$
\left[\begin{array}{ll}
i & 1 \\
0 & 0
\end{array}\right] .
$$

Thus the eigenvalue \mathbf{v}_{1} associated with $\lambda_{1}=1+2 i$ is $\left[\begin{array}{l}i \\ 1\end{array}\right]$ and the eigenvalue \mathbf{v}_{2} associated with $\lambda_{2}=1-2 i=\overline{\lambda_{1}}$ is $\left[\begin{array}{c}-i \\ 1\end{array}\right]=\overline{\mathbf{v}}_{1}$.
(b) $B=\left[\begin{array}{ccc}1 & 5 & -4 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]$

Solution: The characteristic equation is

$$
\operatorname{det}(A-\lambda I)=(2-\lambda)\left(\lambda^{2}-2 \lambda+5\right)
$$

Then the real eigenvalue is $\lambda=2$ and the complex eigenvalues are

$$
\lambda=\frac{2 \pm \sqrt{4-20}}{2}=1 \pm 2 i .
$$

The REF of $A-2 I$ is

$$
\left[\begin{array}{ccc}
1 & -5 & 4 \\
0 & 0 & 0 \\
0 & 1 & -1
\end{array}\right]
$$

Thus the eigenvalue \mathbf{v}_{1} associated with $\lambda_{1}=2$ is $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. For the complex eigenvalues, we have REF of $A-(1-2 i) I$ is

$$
\left[\begin{array}{ccc}
2 & -5 i & 4 i \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus the eigenvalue \mathbf{v}_{2} associated with $\lambda_{2}=1-2 i$ is $\left[\begin{array}{c}-2 i \\ 0 \\ 1\end{array}\right]$ and the eigenvalue
\mathbf{v}_{3} associated with $\lambda_{3}=1+2 i=\overline{\lambda_{2}}$ is $\left[\begin{array}{c}2 i \\ 0 \\ 1\end{array}\right]=\overline{\mathbf{v}}_{2}$.
3. Let

$$
\mathbf{u}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

(a) Find $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{u}$

Solution: $\mathbf{u} \cdot \mathbf{v}=1-2+0=-1=\mathbf{v} \cdot \mathbf{u}$.
(b) Find a unit vector in the direction of \mathbf{u}

Solution: $\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}=\sqrt{2}$. Hence, a unit vector in the direction of $\mathbf{u}=$ $\frac{1}{\sqrt{2}} \mathbf{u}$.
(c) Find a unit vector in the direction of \mathbf{v}

Solution: $\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}=\sqrt{14}$. Hence, a unit vector in the direction of $\mathbf{v}=$ $\frac{1}{\sqrt{14}} \mathbf{v}$.
(d) Find $\operatorname{proj}_{\mathbf{u}} \mathbf{v}$ and $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$.

Solution:

$$
\begin{aligned}
& \operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{-1}{2} \mathbf{u} \\
& \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=\frac{-1}{14} \mathbf{v}
\end{aligned}
$$

4. Determine if the given vectors form an orthogonal set

$$
\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 / 2 \\
-2 \\
7 / 2
\end{array}\right] .
$$

Solution: Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be the given vectors respectively. Then we have

$$
\begin{aligned}
& \mathbf{v}_{1} \cdot \mathbf{v}_{2}=-3+2+1=0 \\
& \mathbf{v}_{1} \cdot \mathbf{v}_{3}=-3 / 2-2+7 / 2=0 \\
& \mathbf{v}_{2} \cdot \mathbf{v}_{3}=1 / 2-4+7 / 2=0
\end{aligned}
$$

Then they form an orthogonal set.
5. Determine if the given vectors form an orthogonal basis for \mathbb{R}^{2}

$$
\left[\begin{array}{l}
3 \\
2
\end{array}\right],\left[\begin{array}{c}
-6 \\
9
\end{array}\right] .
$$

Solution:

(1) Proving directly: Clearly, they form an orthogonal set. We only need to check if they are linearly independent. That is

$$
\begin{aligned}
{\left[\begin{array}{cc}
3 & -6 \\
2 & 9
\end{array}\right] } & \sim\left[\begin{array}{cc}
1 & -2 \\
2 & 9
\end{array}\right] \\
& \sim\left[\begin{array}{cc}
1 & -2 \\
0 & 13
\end{array}\right] .
\end{aligned}
$$

(2) Using Theorem 5.1 in Poole: If $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}$ is an orthogonal set of nonzero vector in \mathbb{R}^{n}, then these vectors are linearly independent. Since our vectors are nonzero and form an orthogonal set, they are also linearly independent. Thus they form an orthogonal basis for \mathbb{R}^{2}.
6. Find the orthogonal complement W^{\perp} of W in \mathbb{R}^{3} where

$$
W=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: 2 x+y=z, y+z=0\right\} .
$$

Hint: $(\operatorname{null} A)^{\perp}=\operatorname{col} A^{T}$ and $(\operatorname{col} A)^{\perp}=\operatorname{null} A^{T}$.

Solution: Note that $W=\operatorname{null}\left\{\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]\right\}$. Let $A=\left[\begin{array}{ccc}2 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]$. Then $W^{\perp}=$ $\operatorname{col} A^{T}$. We have that

$$
A^{T}=\left[\begin{array}{cc}
2 & 0 \\
1 & 1 \\
-1 & 1
\end{array}\right] \sim\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Thus $W^{\perp}=\operatorname{span}\left\{\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.

