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4.1.2 (a) If y is a solution, then my′′ + by′ + ky = 0. Multiplying by c we get

0 = c(my′′ + by′ + ky) = m(cy)′′ + b(cy)′ + k(cy) = 0,

so c · y is also a solution.

(b) If y1, y2 are solutions, then my′′1 + by′1 + ky1 = 0 and my′′2 + by′2 + ky2 = 0. Adding
these relations together we get

0 = (my′′1 + by′1 + ky1) + (my′′2 + by′2 + ky2) = m(y1 + y2)′′ + b(y1 + y2)′ + k(y1 + y2) = 0,

so y1 + y2 is also a solution.

(a) and (b) together say that the set of solutions of the differential equation my′′+by′+ky =
0 form a vector space.

4.1.3 We have
y′ = 6 cos(3t)− 3 sin(3t),

and
y′′ = −18 sin(3t)− 9 cos(3t),

so
2y′′ + 18y = (−36 sin(3t)− 18 cos(3t)) + (36 sin(3t) + 18 cos(3t)) = 0.

We now check the initial conditions:

y(0) = 2 sin(0) + cos(0) = 1,

y′(0) = 6 cos(0)− 3 sin(0) = 6.

The maximum of |y(t)| is attained either at the maximal positive value of y(t), or at the
minimal negative value of y(t). In any case, it is attained at an extremal value of y(t), i.e.
a point where y′(t) = 0. This condition is equivalent to sin(3t) = 2 cos(3t), i.e. tan(3t) = 2.
If this is the case, then

y(t) = cos(3t)(2 tan(3t) + 1) =
±1√

1 + tan2(3t)
(2 tan(3t) + 1) =

±1√
5
· 5 = ±

√
5,

so the maximal value of |y(t)| is
√

5.

Alternatively, one can use the Cauchy-Schwarz inequality to get that

(y(t))2 = (2 sin(3t) + cos(3t))2 ≤ (22 + 12) · (sin2(3t) + cos2(3t)) = 5 · 1 = 5,

with equality when sin(3t)/2 = cos(3t)/1, i.e. tan(3t) = 2.
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4.1.5 We have

y′(t) = −2e−2t sin(
√

2t) +
√

2e−2t cos(
√

2t) = e−2t(−2 sin(
√

2t) +
√

2 cos(
√

2t)),

and

y′′(t) = −2e−2t(−2 sin(
√

2t) +
√

2 cos(
√

2t)) + e−2t(−2
√

2 cos(
√

2t)− 2 sin(
√

2t))

= e−2t(2 sin(
√

2t)− 4
√

2 cos(
√

2t)).

It follows that

my′′ + by′ + ky = y′′ + 4y′ + 6y

= e−2t((2 + 4 · (−2) + 6) sin(
√

2t) + (−4
√

2 + 4
√

2) cos(
√

2t)) = 0.

Since | sin(
√

2t)| ≤ 1 for all t, it follows that 0 ≤ |y(t)| ≤ e−2t, so by the Squeeze Theorem

0 ≤ lim
t→∞
|y(t)| ≤ lim

t→∞
e−2t = 0,

i.e. limt→∞ |y(t)| = 0. It follows that limt→∞ y(t) = 0.

4.1.8 We look for solutions of the equation y′′+ 2y′+ 4y = 5 sin(3t) of the form y = A cos(3t) +
B sin(3t). We have

y′ = −3A sin(3t) + 3B cos(3t),

y′′ = −9A cos(3t)− 9B sin(3t).

The relation y′′ + 2y′ + 4y = 5 sin(3t) becomes

(−9A+ 6B + 4A) cos(3t) + (−9B − 6A+ 4B) sin(3t) = 5 sin(3t),

i.e. {
−5A+ 6B = 0
−6A− 5B = 5

.

Solving this system we get A = 30/61, B = 25/61, so

y(t) =
30
61

cos(3t) +
25
61

sin(3t).

4.1.9 We look for solutions of the equation y′′ + 2y′ + 4y = 3 cos(2t) + 4 sin(2t) of the form
y = A cos(2t) +B sin(2t). We have

y′ = −2A sin(2t) + 2B cos(2t),

y′′ = −4A cos(2t)− 4B sin(2t).

The relation y′′ + 2y′ + 4y = 3 cos(2t) + 3 sin(2t) becomes

(−4A+ 4B + 4A) cos(2t) + (−4B − 4A+ 4B) sin(2t) = 3 cos(3t) + 4 sin(2t),

i.e. {
4B = 3
−4A = 4

.

This gives A = −1, B = 3/4, so

y(t) = − cos(2t) +
3
4

sin(2t).
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4.2.2 The auxiliary equation r2− r− 2 = 0 has distinct solutions r1 = 2 and r2 = −1. It follows
that the general solution of the equation y′′ − y′ − y = 0 is given by

y(t) = c1e
2t + c2e

−t.

4.2.15 The auxiliary equation r2 + 2r+ 1 = 0 has a double solution r1 = r2 = −1. It follows that
the general solution of the equation y′′ + 2y′ + y = 0 is given by

y(t) = c1e
−t + c2te

−t.

The condition y(0) = 1 translates into c1 = 1, while the condition y′(0) = −3 yields

−c1 + c2 = −3,

i.e. c2 = −2. It follows that the solution of the IVP is

y(t) = e−t − 2te−t = (1− 2t)e−t.

4.2.20 The auxiliary equation r2 − 4r + 4 = 0 has a double solution r1 = r2 = 2. It follows that
the general solution of the equation y′′ − 4y′ + 4y = 0 is given by

y(t) = c1e
2t + c2te

2t.

The condition y(1) = 1 translates into (c1 + c2)e2 = 1, while the condition y′(1) = 1 yields

(2c1 + 3c2)e2 = 1,

i.e. c1 = 2e−2 and c2 = −e−2. It follows that the solution of the IVP is

y(t) = 2e2t−2 − te2t−2 = (2− t)e2t−2.

4.2.28 If y1, y2 were linearly dependent, then either y2 would be 0, or we would have y1 = cy2

for some scalar c. Since y2 6= 0, we must have y1 = cy2, hence e3t = ce−4t ⇔ e7t = c
for t ∈ (0, 1). This is of course impossible, since the function e7t is not constant, so the
functions are linearly independent.

4.2.35 (a) On the interval (0,∞) we have y1 − y2 = 0, so the functions are linearly dependent.

(b) On the interval (−∞, 0) we have y1 + y2 = 0, so the functions are linearly dependent.

(c) If y1, y2 were dependent, there would exist a scalar c such that y1 = cy2 (because
y2 6= 0). The equality from (a) says that c = 1, while the one from part (b) says that
c = −1, which is impossible. This shows that y1, y2 are linearly independent on (−∞,∞).

(d) The problem is that y1, y2 is not a pair of solutions to a second order homogeneous linear
differential equation a(t)y′′ + b(t)y′ + c(t)y = 0. If they were, then since y1(1) = y2(1) = 1
and y′1(1) = y′2(1) = 3, they would provide two distinct solutions to the initial value
problem {

a(t)y′′ + b(t)y′ + c(t)y = 0
y(1) = 1, y′(1) = 3

.

This is however impossible, since we know that the solution to an initial value problem is
always unique.
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4.3.3 The auxiliary equation r2 − 6r + 10 = 0 has complex conjugated solutions r1 = 3 + i and
r2 = 3− i. It follows that the general solution of the equation y′′ − 6y′ + 10y = 0 is given
by

y(t) = c1e
3t cos(t) + c2e

3t sin(t).

4.3.16 The auxiliary equation r2− 3r− 11 = 0 has distinct solutions r1 = 3+
√

53
2 and r2 = 3−

√
53

2 .
It follows that the general solution of the equation y′′ − 3y′ − 11y = 0 is given by

y(t) = c1e
3+
√

53
2

t + c2e
3−
√

53
2

t.

4.3.25 The auxiliary equation r2 − 2r + 2 = 0 has complex conjugated solutions r1 = 1 + i and
r2 = 1− i. It follows that the general solution of the equation y′′−2y′+ 2y = 0 is given by

y(t) = c1e
t cos(t) + c2e

t sin(t).

The condition y(π) = eπ translates into c1 = −1, while the condition y′(π) = 0 yields

−c1eπ + c2e
π = 0,

i.e. c2 = −c1 = 1. It follows that the solution of the IVP is

y(t) = −et cos(t) + et sin(t).

4.3.29 (a) The auxiliary equation r3 − r2 + r + 3 = 0 has solutions r1 = −1, r2 = 1 + i
√

2 and
r3 = 1− i

√
2. It follows that the general solution of the equation y′′′ − y′′ + y′ + 3y = 0 is

given by
y(t) = c1e

−t + c2e
t cos(

√
2t) + c3e

t sin(
√

2t).

(b) The auxiliary equation r3 + 2r2 + 5r − 26 = 0 has solutions r1 = 2, r2 = −2 + 3i and
r3 = −2− 3i. It follows that the general solution of the equation y′′′+ 2y′′+ 5y′− 26y = 0
is given by

y(t) = c1e
2t + c2e

−2t cos(3t) + c3e
−2t sin(3t).

(c) The auxiliary equation r4 + 13r2 + 36 = 0 is equivalent to (r2 + 4)(r2 + 9) = 0, so it
has solutions r1 = 2i, r2 = −2i, r3 = 3i and r4 = −3i. It follows that the general solution
of the equation yiv + 13y′′ + 36y = 0 is given by

y(t) = c1 cos(2t) + c2 sin(2t) + c3 cos(3t) + c4 sin(3t).

4.3.35 For the door not to swing back and forth when closing, it must be that the solution
function θ to the IVP

Iθ′′ + bθ′ + kθ = 0, θ(0) = θ0, θ′(0) = v0,

does not alternate between positive and negative values. This can only happen if the
formula for θ does not involve trigonometric functions, i.e. if the solutions of the auxiliary
equation Ir2 + br + k = 0 are not imaginary. According to the quadratic formula, this is
the case when the discriminant b2−4Ik is nonnegative. Since I, b, k > 0, we get b ≥ 2

√
Ik.
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