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1. We solve a) and b) simultaneously by augmenting A with the corresponding vectors (we

let b1 =


1
1
0
0

, b2 =


1
2
0
0

):

[A|b1|b2] =


a 1 1 0 1 1
0 a 1 1 1 2
1 0 −1 0 0 0
0 1 0 −1 0 0

 R1↔R3
R2↔R4∼


1 0 −1 0 0 0
0 1 0 −1 0 0
a 1 1 0 1 1
0 a 1 1 1 2



R3=R3−aR1∼


1 0 −1 0 0 0
0 1 0 −1 0 0
0 1 1 + a 0 1 1
0 a 1 1 1 2

 R4=R4−aR2∼


1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 + a 1 1 1
0 0 1 1 + a 1 2


R1↔R3∼


1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 1 + a 1 2
0 0 1 + a 1 1 1

 R4=R4−(1+a)R3∼


1 0 −1 0 0 0
0 1 0 −1 0 0
0 0 1 1 + a 1 2
0 0 0 −2a− a2 −a −1− a

 .
Now if −2a − a2 6= 0, then −2a − a2 is a pivot, hence neither of b1, b2 is a pivot column,
i.e. both systems are consistent.

Suppose now that −2a − a2 = 0, i.e. a = 0 or a = −2. If a = 0, the matrix [A|b1] is
in echelon form, and doesn’t have a pivot in the b1-column, hence the system Ax = b1 is
consistent. However, the matrix [A|b2] has a pivot in the b2-column (−1 − a = −1 6= 0),
hence Ax = b2 is not consistent.

If a = −2, both [A|b1] and [A|b2] have a pivot in the last column, hence neither of the two
systems are consistent.

2. (a) The matrix of T has columns T (1) =


1
1
1
0

, T (t) =


1
−1
1
1

, T (t2) =


0
0
1
2

, so the

matrix of T is

A =


1 1 0
1 −1 0
1 1 1
0 1 2

 .
1



(b) We row reduce A to find its null space:

A

R2=R2−R1
R3=R3−R1∼


1 1 0
0 −2 0
0 0 1
0 1 2

 R4=R4+R2/2∼


1 1 0
0 −2 0
0 0 1
0 0 2

 .
Since there is a pivot in every column, Nul(A) = 0, hence T is one-to-one. It follows that
Ker(T ) = 0 with basis the empty set, and the image of T is 3-dimensional with basis


1
1
1
0

 ,


1
−1
1
1

 ,


0
0
1
2


.

3. The characteristic polynomial det(A − λI) = −λ3 + 2λ2, so A has eigenvalues λ1 = 2
with multiplicity 1, and λ2,3 = 0 with multiplicity 2. A matrix is diagonalizable if and
only if for each eigenvalue λ, the multiplicity of λ equals the dimension of the eigenspace
Eλ. Eλ is always at least one-dimensional, so for λ of multiplicity one this condition is
trivial. It follows that in our case A is diagonalizable if and only if the dimension of
E0 = Nul(A− 0 · I) = Nul(A) equals 2, the multiplicity of the eigenvalue 0.

To determine Nul(A), we row reduce A:

A

R2=R2−R1/2
R3=R3−R1∼

 4 −1 −2
0 1/2 0
0 −1 0

 R3=R3+2R2∼

 4 −1 −2
0 1/2 0
0 0 0

 .
It follows that A has two pivot columns and one non-pivot column. This shows that the
dimension of Nul(A) is 1, hence A is not diagonalizable.

4. We first solve the homogeneous equation y′′ + 3y′ + 2y = 0: the auxiliary equation is
r2 + 3r + 2 = 0, with roots r1 = −1 and r2 = −2. It follows that

yh = c1e
−x + c2e

−2x.

We now use superposition to find a particular solution yp = yp1 + yp2 , with yp1 a solution
for

y′′ + 3y′ + 2y = sin(ex),

and yp2 a solution for
y′′ + 3y′ + 2y = −e−x.

We use variation of parameters to determine yp1 . We take

yp1 = u1y1 + u2y2

where y1 = e−x, y2 = e−2x and u′1, u
′
2 satisfy the system of equations{

u′1y1 + u′2y2 = 0
u′1y
′
1 + u′2y

′
2 = sin(ex)



or equivalently {
u′1e
−x + u′2e

−2x = 0
u′1(−e−x) + u′2(−2e−2x) = sin(ex)

Adding the two equations we obtain

−u′2e−2x = sin(ex),

or equivalently
u′2 = −e2x sin(ex).

It follows that
u2 =

∫
(−e2x sin(ex))dx = ex cos(ex)− sin(ex)

(this follows from the substitution u = ex). We have

u′1 = −u′2e−x = ex sin(ex)

so
u1 =

∫
(ex sin(ex))dx = − cos(ex)

(again by the substitution u = ex). Substituting back into the formula of yp1 we get

yp1 = − cos(ex)e−x + (ex cos(ex)− sin(ex))e−2x = − sin(ex)e−2x

We now use undetermined coefficients to find yp2 . Since −1 is a solution of the character-
istic equation, with multiplicity s = 1, and e−x has the form (exponential)·(polynomial of
degree 0), yp2 has to equal xs·(exponential)·(polynomial of degree 0):

yp2 = x · e−x · a.

We get y′p2 = ae−x(1− x), y′′p2 = ae−x(x− 2), and

−e−x = y′′p2 + 3y′p2 + 2yp2 = ae−x(x− 2 + 3(1− x) + 2x) = ae−x.

It follows that a = −1 and yp2 = −xe−x. We get

yp = yp1 + yp2 = − sin(ex)e−2x − xe−x.

Putting everything together, it follows that the general solution of our equation is given
by

y = c1e
−x + c2e

−2x − sin(ex)e−2x − xe−x.

5. We first solve the homogeneous equation y(4)+2y(2)+y = 0: the auxiliary equation is (r2+
1)2 = 0, with complex conjugate roots ±i, each having multiplicity 2. It follows that a basis
for the space of solutions of this homogeneous equation is {cos(x), sin(x), x cos(x), x sin(x)},
i.e.

yh = c1 cos(x) + c2 sin(x) + c3x cos(x) + c4x sin(x).

We now use undetermined coefficients to find a particular solution yp of y(4) + 2y(2) + y =
x cos(x). Since the right hand side has the form eαx cos(βx)·polynomial of degree 1, with



α = 0, β = 1, we take yp of the form xs · eαx cos(βx)·polynomial of degree 1, where s is the
multiplicity of α+ βi = i as a root of the auxiliary equation, i.e. s = 2. We get

yp = x2((a+ bx) cos(x) + (c+ dx) sin(x)) = (ax2 + bx3) cos(x) + (cx2 + dx3) sin(x).

Taking derivatives, we obtain

y′p =(2ax+ (3b+ c)x2 + dx3) cos(x)

+(2cx+ (3d− a)x2 − bx3) sin(x),

y(2)
p =(2a+ (6b+ 4c)x+ (6d− a)x2 − bx3) cos(x)

+(2c+ (6d− 4a)x− (6b+ c)x2 − dx3) sin(x),

y(3)
p =((6b+ 6c) + (18d− 6a)x− (9b+ c)x2 − dx3) cos(x)

+((6d− 6a)− (18b+ 6c)x− (9d− a)x2 + bx3) sin(x),

y(4)
p =((24d− 12a)− (36b+ 8c)x− (12d− a)x2 + bx3) cos(x)

+(−(24b+ 12c)− (36d− 8a)x+ (12b+ c)x2 + dx3) sin(x).

It follows that

x cos(x) = y(4)
p + 2y(2)

p + yp = ((24d− 8a)− 24bx) cos(x) + (−(24b+ 8c)− 24dx) sin(x).

Equating the coefficients, we obtain 24d − 8a = 0, −24b = 1, 24b + 8c = 0 and 24d = 0.
This shows that a = d = 0 and b = −1/24, c = 1/8. In conclusion,

yp = −x
3 cos(x)

24
+
x2 sin(x)

8
,

and the general solution of our equation is given by

y = c1 cos(x) + c2 sin(x) + c3x cos(x) + c4x sin(x)− x3 cos(x)
24

+
x2 sin(x)

8
.


