Review Session

Claudiu Raicu

October 16, 2010

1. Consider the linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^3$, defined by

 $T(x) = (-3x_1 + 6x_2 - x_3 + x_4 - 7x_5, x_1 - 2x_2 + 2x_3 + 3x_4 - x_5, 2x_1 - 4x_2 + 5x_3 + 8x_4 - 4x_5).$

- a) Find the standard matrix of T.
- b) Find bases for Nul(A), Col(A), Row(A).
- c) Find bases for $Nul(A^T)$, $Col(A^T)$, $Row(A^T)$.
- d) Find the ranks of $A, A^T, A^T A$ and $A A^T$.
- e) Find bases for the kernel of T and for the range of T.
- f) Is T one-to-one? Is it onto?
- 2. Consider the bases $\mathcal{B} = \{1 + t + t^2, 1 + t 2t^2, 1 t\}, \ \mathcal{C} = \{1, (t 1), (t 1)^2\}, \text{ and} \ \mathcal{D} = \{1, (t 1), (t 1)t\} \text{ for } \mathbb{P}_2.$ Find the representation of the polynomial $p = (t + 1)^2$ in each of these three bases. Compute the change of coordinates matrix from \mathcal{D} to \mathcal{B} .
- 3. Consider an $n \times n$ invertible matrix A. Is A row equivalent to A^{-1} ? Show that if A is similar to A^{-1} , then $\det(A) = \pm 1$. Give an example of a matrix A with determinant 1 which is not similar to its inverse.
- 4. Consider the matrix

$$A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find the eigenvalues of A. Determine the values of h for which A is diagonalizable.

5. Consider the sequence given by $f_0 = 0$, $f_1 = 1$, and $f_{n+1} = f_n - f_{n-1}$ for $n \ge 1$. Show that

$$\begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} f_{n-1} \\ f_n \end{bmatrix} = \begin{bmatrix} f_n \\ f_{n+1} \end{bmatrix},$$

for all $n \ge 1$. Find f_{1000} .

6. Find an orthogonal basis for $W = \text{Span}\{u_1, u_2, u_3\}$, where $u_1 = \begin{vmatrix} 3 \\ -3 \\ 0 \\ 1 \end{vmatrix}$, $u_2 = \begin{vmatrix} 2 \\ 2 \\ -1 \\ 0 \end{vmatrix}$,

$$u_3 = \begin{bmatrix} 6\\0\\3\\1 \end{bmatrix}$$
. Consider the transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ given by $T(x) = \operatorname{proj}_W(x)$. Show

that T is a linear transformation, determine T(v), where $v = \begin{bmatrix} 5 \\ -3 \\ 1 \\ 0 \end{bmatrix}$, and compute the standard matrix of T. Is T one-to-one? Describe the range of T.

7. Describe all least-squares solutions of the equation Ax = b, where

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \text{ and } b = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}.$$

8. Calculate the characteristic equation of the matrix

Γ	0	1	0	• • •	0]	
	0	0	1	• • •	0	
	÷	÷	÷	·	÷	.
	0	0	0		1	
L	$-a_{0}$	$-a_1$	$-a_2$	• • •	$-a_{n-1}$	

9. Let A be an $m \times n$ matrix. Show that $Nul(A) = Nul(A^T A)$, and that $Col(A^T) = Col(A^T A)$.