Worksheet 10

Claudiu Raicu

October 29, 2010

Solve the differential equation or initial-value problem using the method of undetermined coefficients (and the superposition principle when needed).

1. $y'' + y = e^x + x^3$. 2. $y'' - 4y = e^x \cos(x), \ y(0) = 1, \ y'(0) = 2$. 3. $y'' - 2y' + y = 8e^t$. 4. $y'' + y' - 12y = e^t + e^{2t} - 1$. 5. $y'' - y' = 1 + e^x, \ y(0) = y(1) = 0$.

Find a particular solution of the differential equation, using the method of undetermined coefficients.

- 6. $y''' + y'' 2y = te^t$. 7. $y^{(4)} - 3y'' - 8y = \sin(t)$.
- 8. Find a form of a particular solution for the differential equation $y'' + 2y' + 2y = 8t^3e^{-t}\sin(t)$.

Solve the differential equation using the method of variation of parameters.

9.
$$y'' + y = \sec^3(x), \ 0 < x < \pi/2.$$

10. $y'' + 3y' + 2y = \sin(e^x).$

11. $y'' - 2y' + y = \frac{e^x}{1 + x^2}.$

Solve the differential equation using (a) undetermined coefficients and (b) variation of parameters.

12. y'' - 2y' - 3y = x + 2.

13.
$$y'' - y' = e^x$$
.

Find a particular solution to the variable coefficient equation given that y_1, y_2 are linearly independent solutions to the corresponding homogeneous equation for t > 0

14. $ty'' - (t+1)y' + y = t^2$, $y_1 = e^t$, $y_2 = t+1$. 15. $ty'' + (1-2t)y' + (t-1)y = te^t$, $y_1 = e^t$, $y_2 = e^t \ln(t)$.