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1. The auxiliary equation for y′′ + y = 0 is r2 + 1 = 0, with solutions ±i. It follows that the
general solution of y′′ + y = 0 is given by

y = c1 cos(x) + c2 sin(x).

a) y(0) = 0 implies c1 = 0. y(2π) = 1 implies c1 = 1, i.e. there is no y satisfying the given
boundary conditions.

b) y(0) = 1 implies c1 = 1, and y(2π) = 1 also implies c1 = 1. It follows that c1 = 1 and
c2 is arbitrary, i.e. y = c sin(x) for some real number c.

2. The auxiliary equation for y′′+λy = 0 is r2 +λ = 0. We analyze the possible cases λ = 0,
λ < 0 and λ > 0, corresponding to the auxiliary equation having a double root, distinct
real roots, or complex conjugate roots.

Case λ = 0. We have that r2 = 0 has a double root r = 0. This means that y = c1 + c2x
for some c1, c2. We analyze a) and b) separately:

a) y(0) = 0 yields c1 = 0, while y′(π) = 0 yields c2 = 0, i.e. y = 0 is the unique solution
in this case.

b) y(0)− y′(0) = 0 yields c1 − c2 = 0, and y(π) = 0 yields c1 + c2π = 0. This means that
c1 = c2 and (1 + π)c2 = 0, i.e. c1 = c2 = 0. Therefore y = 0 is the unique solution in this
case also.

Case λ < 0. We have that r2 = −λ has distinct real roots r1,2 = ±
√
−λ. This means that

y = c1e
√
−λx + c2e

−
√
−λx for some c1, c2. We analyze a) and b) separately:

a) y(0) = 0 yields c1 + c2 = 0, while y′(π) = 0 yields

c1
√
−λe

√
−λπ − c2

√
−λe

√
−λπ = 0.

Dividing by
√
−λ and substituting c2 by −c1, we get

c1(e
√
−λπ + e−

√
−λπ) = 0,

yielding c1 = 0, and hence c2 = 0. We get that y = 0 is the unique solution in this case.

b) y(0)−y′(0) = 0 yields c1+c2−(c1
√
−λ−c2

√
−λ) = 0, i.e. c1(1−

√
−λ)+c2(1+

√
−λ) = 0.

y(π) = 0 yields
c1e
√
−λπ + c2e

√
−λπ = 0.

This means c1, c2 satisfies a homogeneous system of equations whose coefficient matrix is

A =
[

1−
√
−λ 1 +

√
−λ

e
√
−λπ e−

√
−λπ

]
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This is an invertible matrix, since its determinant is nonzero:

det(A) = (1−
√
−λ)e−

√
−λπ − (1 +

√
−λ)e

√
−λπ.

If this was zero, multiplying by e
√
−λπ we’d get

1−
√
−λ = (1 +

√
−λ)e2

√
−λπ.

This is impossible, since the LHS is smaller than 1, whereas the RHS is larger than 1.

Now because A is invertible, its null space is zero, i.e. the vector
[
c1
c2

]
which is in Nul(A)

has to be the zero vector. We get c1 = c2 = 0, and hence y = 0 is the unique solution of
the problem.

Case λ > 0. We have that r2 = −λ has complex conjugate roots r1,2 = ±i
√
λ. This means

that y = c1 cos(
√
λx) + c2 sin(

√
λx) for some c1, c2. We analyze a) and b) separately:

a) y(0) = 0 yields c1 = 0, so y(x) = c2 sin(
√
λx). y′(π) = 0 yields c2

√
λ cos(

√
λπ) = 0. If

cos(
√
λπ) 6= 0, then c2 must be equal to zero, and therefore y = 0.

In order to get a nontrivial solution y, we must have cos(
√
λπ) = 0. We know that

cos(απ) = 0 if and only if α = n + 1
2 for some integer n. Since

√
λ is positive, we must

have
√
λ = n+ 1

2 for some nonnegative integer n. This implies that for

λ = (n+
1
2

)2, n = 0, 1, 2, · · ·

the problem has a nontrivial solution, and the set of solutions is given by

yn = c sin((n+
1
2

)x).

b) y(0)− y′(0) = 0 yields c1 − c2
√
λ = 0. The condition y(π) = 0 yields

c1 cos(
√
λπ) + c2 sin(

√
λπ) = 0.

Using that c1 = c2
√
λ, this gives

c2(
√
λ cos(

√
λπ) + sin(

√
λπ)) = 0.

If
√
λ cos(

√
λπ) + sin(

√
λπ) 6= 0, then c2 = 0 and hence c1 = 0, i.e. y = 0.

In order to get a nontrivial solution y, we must have
√
λ cos(

√
λπ) + sin(

√
λπ) = 0, i.e.

√
λ+ tan(

√
λπ) = 0.

Unfortunately, there are no formulas for the λ’s that satisfy this equation. The first few
λ’s are given by 1.29, 2.37, 3.41, · · · .

3. We look for a solution

u(x, t) =
∞∑
n=1

cne
−βn2t sin

(nπx
L

)
,
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where β = 3 and L = π, i.e.

u(x, t) =
∞∑
n=1

cne
−3n2t sin(nx).

Letting t = 0, we get

u(x, 0) =
∞∑
n=1

cn sin(nx).

a) u(x, 0) = f(x) yields c1 = 1, c4 = −6 and cn = 0 for n 6= 1, 4. This shows that

u(x, t) = e−3t sin(x)− 6e−48t sin(4x).

b) u(x, 0) = f(x) yields c1 = 1, c3 = −7, c5 = 1 and cn = 0 for n 6= 1, 3, 5. This shows
that

u(x, t) = e−3t sin(x)− 7e−27t sin(3x) + e−75t sin(5x).

4. We look for a solution

u(x, t) =
∞∑
n=1

(
an cos

(nπα
L

t
)

+ bn sin
(nπα
L

t
))

sin
(nπx
L

)
,

where L = π and α = 3, i.e.

u(x, t) =
∞∑
n=1

(an cos(3nt) + bn sin(3nt)) sin(nx).

We get

u(x, 0) =
∞∑
n=1

an sin(nx) = f(x),

and
∂u

∂t
(x, 0) =

∞∑
n=1

3nbn sin(nx) = g(x).

a) Since g(x) ≡ 0, we get bn = 0 for all n. The condition u(x, 0) = f(x) yields a2 = 3,
a13 = 12 and an = 0 for n 6= 2, 13. It follows that

u(x, t) = 3 cos(6t) sin(2x) + 12 cos(39t) sin(13x).

b) The condition u(x, 0) = f(x) yields a2 = 6, a6 = 2 and an = 0 for n 6= 2, 6. The
condition ∂u

∂t (x, 0) = g(x) yields 27b9 = 11, 45b15 = −14 and bn = 0 for n 6= 9, 15. This
gives b9 = 11/27, b15 = −14/45 and therefore

u(x, t) = 6 cos(6t) sin(2x) + 2 cos(18t) sin(6x) +
11
27

sin(27t) sin(9x)− 14
45

sin(45t) sin(15x).
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5. The coefficients in the Fourier series are given by the formulas

an =
1
T

∫ T

−T
f(x) cos

(nπx
T

)
dx,

bn =
1
T

∫ T

−T
f(x) sin

(nπx
T

)
dx.

a) Since T = π, and f is even, we get bn = 0 for all n, and

an =
2
π

∫ π

0
x cos(nx)dx =

2((−1)n − 1)
πn2

.

b) Since T = 2, f(x) = 1 for x < 0 and f(x) = x for x > 0, we have

a0 =
1
2

(∫ 0

−2
1dx+

∫ 2

0
xdx

)
= 2,

an =
1
2

(∫ 0

−2
cos
(nπx

2

)
dx+

∫ 2

0
x cos

(nπx
2

)
dx

)
=

2((−1)n − 1)
π2n2

, n ≥ 1

and

bn =
1
2

(∫ 0

−2
sin
(nπx

2

)
dx+

∫ 2

0
x sin

(nπx
2

)
dx

)
=

1
2

(
2((−1)n − 1)

πn
+

4(−1)n+1

πn

)

=
(−1)n+1 − 1

πn
.
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