Worksheet 2

Claudiu Raicu

September 3, 2010

Determine if the vectors are linearly independent

1.
$$\begin{bmatrix} 5\\0\\0 \end{bmatrix}$$
, $\begin{bmatrix} 7\\2\\-6 \end{bmatrix}$, $\begin{bmatrix} 9\\4\\-8 \end{bmatrix}$.
2. $\begin{bmatrix} -1\\4 \end{bmatrix}$, $\begin{bmatrix} 2\\8 \end{bmatrix}$.
3. $\begin{bmatrix} 3\\5\\-1 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0 \end{bmatrix}$, $\begin{bmatrix} -6\\5\\4 \end{bmatrix}$.
4. $\begin{bmatrix} 4\\4 \end{bmatrix}$, $\begin{bmatrix} -1\\3 \end{bmatrix}$, $\begin{bmatrix} 2\\5 \end{bmatrix}$, $\begin{bmatrix} 8\\1 \end{bmatrix}$.

5. How many pivot columns must a 5×7 matrix have if its columns span \mathbb{R}^5 ?

- 6. How many pivot columns must a 7×5 matrix have if its columns are linearly independent?
- 7. Construct 3×2 matrices A and B such that Ax = 0 has only the trivial solution and Bx = 0 has a nontrivial solution.
- 8. Show that if v_1, v_2 are in \mathbb{R}^4 and v_2 is not a scalar multiple of v_1 , then $\{v_1, v_2\}$ is linearly independent.
- 9. Show that if v_1, \dots, v_4 are linearly independent vectors in \mathbb{R}^4 , then $\{v_1, v_2, v_3\}$ is also linearly independent.
- 10. Show that if v_1, v_2, v_3 are linearly independent vectors in \mathbb{R}^4 and v_4 is not a linear combination of v_1, v_2, v_3 , then $\{v_1, v_2, v_3, v_4\}$ is linearly independent.
- 11. Show that if v_1, v_2, v_3 are linearly independent vectors in \mathbb{R}^3 and v_4 is any vector in \mathbb{R}^3 , then v_4 is a linear combination of v_1, v_2, v_3 .
- 12. Suppose an $m \times n$ matrix A has n pivot columns. Explain why for each **b** in \mathbb{R}^m the equation $Ax = \mathbf{b}$ has at most one solution.
- 13. Let

$$A = \begin{bmatrix} .5 & 0 & 0 \\ 0 & .5 & 0 \\ 0 & 0 & .5 \end{bmatrix}, \quad u = \begin{bmatrix} 1 \\ 0 \\ -4 \end{bmatrix}, \quad v = \begin{bmatrix} a \\ b \\ c \end{bmatrix}.$$

Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by T(x) = Ax. Find T(u) and T(v).

With T defined by T(x) = Ax, find an x whose image under T is b, and determine if x is unique.

14.
$$A = \begin{bmatrix} 1 & 0 & -1 \\ 3 & 1 & -5 \\ -4 & 2 & 1 \end{bmatrix}$$
, $b = \begin{bmatrix} 0 \\ -5 \\ -6 \end{bmatrix}$ 15. $A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 3 & 1 \\ 0 & 3 & -8 \end{bmatrix}$, $b = \begin{bmatrix} 5 \\ 9 \\ 4 \end{bmatrix}$

- 17. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let $\{v_1, v_2, v_3\}$ be a linearly dependent set in \mathbb{R}^n . Explain why the set $\{T(v_1), T(v_2), T(v_3)\}$ is linearly dependent.
- 18. Determine if the linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^4$ given by $T(x_1, x_2, x_3, x_4) = (x_1 + x_2, x_2 + x_3, x_3 + x_4, 0)$ is onto. Is it one-to-one?