Worksheet 3

Claudiu Raicu

September 10, 2010

Find the determinant and inverse (if it exists) of the matrix

1.
$$\begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix}$$
3. $\begin{bmatrix} 5 & 10 \\ 4 & 7 \end{bmatrix}$

2. $\begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$
4. $\begin{bmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4 \end{bmatrix}$

Find the determinants and inverses (if they exist) of the matrices

5. $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 1 & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 1 \end{bmatrix}$ Here the last matrix is a square ma-

trix with n rows and n columns, and ones on and below the diagonal.

6.	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$0 \\ 2$	0],	1 1	$\begin{array}{c} 0 \\ 2 \end{array}$	0 0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$		$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	$\begin{bmatrix} 0 & 0 & \dots & 0 \\ 2 & 0 & \dots & 0 \end{bmatrix}$ Here the last matrix is a	Here the last matrix is a square ma	
	$\begin{bmatrix} 1\\1 \end{bmatrix}$	$\frac{2}{2}$	3		1 1	$\frac{2}{2}$	$\frac{3}{3}$	$\begin{array}{c} 0 \\ 4 \end{array}$	$\begin{bmatrix} 0\\4 \end{bmatrix}$: 1	$\frac{1}{2}$: 3	••.

trix with n rows and n columns, and with entries on and below the diagonal equal to i on the i-th column.

- 7. Let $A = \begin{bmatrix} -2 & -7 & -9 \\ 2 & 5 & 6 \\ 1 & 3 & 4 \end{bmatrix}$. Find the third column of A^{-1} without computing the other columns.
- columns. 8. Let $A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}$. Construct a 4×2 matrix D using only 1 and 0 as entries, such that $AD = I_2$. Is it possible that $CA = I_4$ for some 4×2 matrix C? Why or why not?
- 9. Consider the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ given by

 $T(x_1, x_2) = (-5x_1 + 9x_2, 4x_1 - 7x_2).$

Show that T is invertible and find a formula for T^{-1} .

10. Consider the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by

$$T(x_1, x_2) = (6x_1 - 8x_2, -5x_1 + 7x_2).$$

Show that T is invertible and find a formula for T^{-1} .

11. Suppose that $T : \mathbb{R}^n \to \mathbb{R}^n$ is a linear transformation with the property that T(u) = T(v) for some pair of distinct vectors u and v. Can T map \mathbb{R}^n onto \mathbb{R}^n ? Why or why not?