Worksheet 4

Claudiu Raicu

September 17, 2010

- 1. Let W be the union of the first and third quadrants in the xy-plane.
 - a) If \mathbf{u} is in W and c is any scalar, is $c\mathbf{u}$ in W? Why?
 - b) Find specific vectors \mathbf{u} and \mathbf{v} in W such that $\mathbf{u} + \mathbf{v}$ is not in W. Is W a vector space?
- 2. Consider the line x + y = 1 in \mathbb{R}^2 . Is it a vector space?
- 3. Determine if the given set is a subspace of \mathbb{P}_n (polynomials of degree at most n) for an appropriate value of n.
 - a) All polynomials of the form $p(t) = at^2$, where a is in \mathbb{R} .
 - b) All polynomials of the form $p(t) = a + t^2$, where a is in \mathbb{R} .
 - c) All polynomials of degree at most 3, with integers as coefficients.
 - d) All polynomials of degree 4.
 - e) All polynomials f of degree at most 5 with the property that 4f(x) = xf'(x).
- 4. Let F be a fixed 3×2 matrix, and let H be the set of all matrices A in $M_{2\times 4}$ with the property that FA = 0 (the zero matrix in $M_{3\times 4}$). Determine if H is a subspace of $M_{2\times 4}$.
- 5. Given subspaces H and K of a vector space V, the sum of H and K, written as H + K, is the set of all vectors in V that can be written as the sum of two vectors, one in H and the other in K; that is,

 $H + K = \{ \mathbf{w} : \mathbf{w} = \mathbf{u} + \mathbf{v} \text{ for some } \mathbf{u} \text{ in } H \text{ and some } \mathbf{v} \text{ in } K. \}.$

- a) Show that H + K is a subspace of V.
- b) Show that H is a subspace of H + K and K is a subspace of H + K.
- 6. Find the null spaces of the matrices

$$\begin{bmatrix} 1 & 3 & 5 & 0 \\ 0 & 1 & 4 & -2 \end{bmatrix}, \begin{bmatrix} 1 & -6 & 4 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -2 & 0 & 4 & 0 \\ 0 & 0 & 1 & -9 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

7. Define a linear transformation $T : \mathbb{P}_2 \to \mathbb{R}^2$ by

$$T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(0) \\ \mathbf{p}(0) \end{bmatrix}$$

Find polynomials $\mathbf{p}_1, \mathbf{p}_2$ that span the kernel of T, and describe the range of T.

- 8. Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T : M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A + A^T$.
 - a) Show that T is a linear transformation.
 - b) Let B be any element of $M_{2\times 2}$ such that $B^T = B$. Find an A in $M_{2\times 2}$ such that T(A) = B.
 - c) Show that the range of T is the set of B in $M_{2\times 2}$ with the property that $B^T = B$.
 - d) Describe the kernel of T.
- 9. Find a basis for the set of vectors in \mathbb{R}^3 in the plane x + 2y + z = 0.
- 10. Find bases for the null spaces of the matrices in exercise 6.
- 11. Let $\mathbf{v}_1 = \begin{bmatrix} 4 \\ -3 \\ 7 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 9 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 7 \\ 11 \\ 6 \end{bmatrix}$. Verify that $4\mathbf{v}_1 + 5\mathbf{v}_2 = 3\mathbf{v}_3$ and use this information to find a basis for $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
- 12. Suppose $\mathbb{R}^4 = \text{Span}\{\mathbf{v}_1, \cdots, \mathbf{v}_4\}$. Explain why $\{\mathbf{v}_1, \cdots, \mathbf{v}_4\}$ is a basis for \mathbb{R}^4 .
- 13. Let $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ be a set of k vectors in \mathbb{R}^n with k < n. Explain why S cannot be a basis for \mathbb{R}^n .
- 14. Consider the polynomials $\mathbf{p}_1(t) = 1 + t^2$ and $\mathbf{p}_2(t) = 1 t^2$. Is $\{\mathbf{p}_1, \mathbf{p}_2\}$ a linearly independent set in \mathbb{P}_2 ? Is it a basis? Why or why not?
- 15. Consider the polynomials $\mathbf{p}_1(t) = 1 + t$, $\mathbf{p}_2(t) = 1 t$ and $\mathbf{p}_3(t) = 2$. Write a linear dependence relation among $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$. Find a basis for $\text{Span}\{\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3\}$.