Worksheet 5

Claudiu Raicu

September 24, 2010

1. Find the coordinate vector $[x]_{\mathcal{B}}$ of the vector x relative to the given basis $\mathcal{B} = \{b_1, \dots, b_n\}$:

a)
$$b_1 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
, $b_2 = \begin{bmatrix} 5 \\ -6 \end{bmatrix}$, $x = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$.
b) $b_1 = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}$, $b_2 = \begin{bmatrix} -3 \\ 4 \\ 9 \end{bmatrix}$, $b_3 = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$, $x = \begin{bmatrix} 8 \\ -9 \\ 6 \end{bmatrix}$.

- 2. The set $\mathcal{B} = \{1 t^2, t t^2, 2 2t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $\mathbf{p}(t) = 3 + t 6t^2$, relative to \mathcal{B} .
- 3. The vectors $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 7 \end{bmatrix}$ span \mathbb{R}^2 but do not form a basis. Find two different ways to express $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
- 4. Given a vector space V with basis \mathcal{B} , show that the coordinate mapping $x \mapsto [x]_{\mathcal{B}}$ is one-to-one and onto.
- 5. Use coordinate vectors to test the linear independence of the sets of polynomials
 - a) $1 2t^2 3t^3$, $t + t^3$, $1 + 3t 2t^2$.
 - b) $(t-1)^2$, $t^3 2$, $(t-2)^3$.
- 6. Determine the dimensions of Nul(A), Col(A) and Row(A) (the row space of A) for the matrix

[1]	-6	9	0	-2]
0	1	2	-4	5
0	0	0	5	1
0	0	0	0	0

- 7. Let H be an n-dimensional subspace of an n-dimensional vector space V. Show that H = V.
- 8. Let $T: V \to W$ be a linear transformation between vector spaces V, W, let H be a nonzero subspace of V, and let T(H) be the set of images of vector in H. Show that T(H) is a subspace of W and that $\dim(T(H)) \leq \dim(H)$. Explain why equality holds when T is one-to-one.
- 9. If A is a 7×9 matrix with a two-dimensional null space, what is the rank of A?

10. Find bases for and compute the dimensions of Col(A), Row(A) and Nul(A), where

$$A = \begin{bmatrix} 2 & -3 & 6 & 2 & 5 \\ -2 & 3 & -3 & -3 & -4 \\ 4 & -6 & 9 & 5 & 9 \\ -2 & 3 & 3 & -4 & 1 \end{bmatrix}$$

What is the rank of A?

- 11. If a 3×8 matrix A has rank 3, find the dimensions of Nul(A), Row(A) and rank A^{T} .
- 12. Suppose A is an $m \times n$ matrix and b is a vector in \mathbb{R}^m . What has to be true about the two numbers rank [A b] and rank A for the equation Ax = b to be consistent?

13. Calculate the rank of the matrix
$$uv^T$$
, where $u = \begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix}$ and $v = \begin{bmatrix} 1 \\ -1 \\ -3 \end{bmatrix}$. What happens if you replace v by a nonzero vector $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$?

- 14. Let $\mathcal{D} = \{d_1, d_2, d_3\}$ and $\mathcal{F} = \{f_1, f_2, f_3\}$ be bases for a vector space V, and suppose that $f_1 = 2d_1 d_2 + d_3$, $f_2 = 3d_2 + d_3$ and $f_3 = -3d_1 + 2d_3$.
 - a) Find the change-of-coordinates matrix from ${\mathcal F}$ to ${\mathcal D}.$
 - b) Find $[x]_{\mathcal{D}}$ for $x = f_1 2f_2 + 2f_3$.
- 15. In \mathbb{P}_2 , find the change-of-coordinates matrix from the basis $\mathcal{B} = \{1 2t + t^2, 3 5t + 4t^2, 2t + 3t^2\}$ to the basis $\mathcal{C} = \{1, t, t^2\}$. Then find the \mathcal{B} -coordinate vector for -1 + 2t.