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1. a) We have
[b1 b2] · [x]B = x,

so to find [x]B we need to solve the system whose augmented matrix is

[b1 b2 x] =
[

1 5 4
−2 −6 0

]
.

Row-reducing, we obtain the reduced echelon form of [b1 b2 x] to be[
1 0 −6
0 1 2

]
,

so

[x]B =
[
−6
2

]
.

b) We have
[b1 b2 b3] · [x]B = x,

so to find [x]B we need to solve the system whose augmented matrix is

[b1 b2 b3 x] =

 1 −3 2 8
−1 4 −2 −9
−3 9 4 6

 .

Row-reducing, we obtain the reduced echelon form of [b1 b2 b3 x] to be 1 0 0 −1
0 1 0 −1
0 0 1 3

 ,

so

[x]B =

 −1
−1
3

 .

2. We must find c1, c2, c3 such that

c1(1− t2) + c2(t− t2) + c3(2− 2t + t2) = 3 + t− 6t2.
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Equating for the coefficients we obtain a system of equations whose augmented matrix is 1 0 2 3
0 1 −2 1
−1 −1 1 −6

 .

Row-reducing, we obtain the reduced echelon form 1 0 0 7
0 1 0 −3
0 0 1 −2

 ,

so

[p]B =

 7
−3
−2

 .

3. We are trying to solve the system of equations

x1

[
1
−3

]
+ x2

[
2
−8

]
+ x3

[
−3
7

]
=
[

1
1

]
.

This has augmented matrix [
1 2 −3 1
−3 −8 7 1

]
,

whose reduced echelon form is [
1 0 −5 5
0 1 1 −2

]
.

x3 is then a free variable and the solutions to this system are given by x1 = 5 + 5x3,
x2 = −2−x3 and x3 arbitrary. To get two distinct solutions, we choose two distinct values
for x3.

If x3 = 0, we get x1 = 5 and x2 = −2, so[
1
1

]
= 5v1 − 2v2.

If x3 = −1, we get x1 = 0 and x2 = −1, so[
1
1

]
= −v2 − v3.

4. Say B = {b1, · · · , bn}, and consider arbitrary vectors x, y ∈ V and scalar c ∈ R. We denote
by T the linear transformation given by T (x) = [x]B. To show that T is linear we need to
check that

a) T (x + y) = T (x) + T (y).

b) T (c · x) = c · T (x).

Let’s write
x = x1 · b1 + · · ·+ xn · bn,
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and
y = y1 · b1 + · · ·+ yn · bn,

for some real numbers x1, · · · , xn, y1, · · · , yn. This means that

T (x) = [x]B =


x1

x2
...

xn

 and T (y) = [y]B =


y1

y2
...

yn

 .

To see why a) is true, note that

x + y = (x1 + y1) · b1 + · · ·+ (xn + yn) · bn,

i.e.

T (x + y) = [x + y]B =


x1 + y1

x2 + y2
...

xn + yn

 =


x1

x2
...

xn

+


y1

y2
...

yn

 = T (x) + T (y).

To see why b) is true, note that

c · x = (c · x1) · b1 + · · ·+ (c · xn) · bn,

i.e.

T (c · x) = [c · x]B =


c · x1

c · x2
...

c · xn

 = c ·


x1

x2
...

xn

 = c · T (x).

5. If we write C for the standard basis {1, t, t2, t3} of P3, then we can use the coordinate
mapping p 7→ [p]C to represent all our polynomials as vectors in R4.

a) The coordinate mapping sends the polynomials to the columns of the matrix
1 0 1
0 1 3
−2 0 −2
−3 1 0

 .

Row-reducing, we get 
'&%$ !"#1 0 1
0 '&%$ !"#1 3
0 0 0
0 0 0

 ,

i.e. the matrix doesn’t have a pivot in every column, so its columns are linearly dependent.
It follows that our original vectors were linearly dependent.

b) The coordinate mapping sends the polynomials to the columns of the matrix
1 −2 −8
−2 0 12
1 0 −6
0 1 1

 .
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Row-reducing, we get 
'&%$ !"#1 0 −6
0 '&%$ !"#1 1
0 0 0
0 0 0

 ,

i.e. the matrix doesn’t have a pivot in every column, so its columns are linearly dependent.
It follows that our original vectors were linearly dependent.

6. The matrix is already in echelon form, and we circle its pivots:
'&%$ !"#1 −6 9 0 −2
0 '&%$ !"#1 2 −4 5
0 0 0 '&%$ !"#5 1
0 0 0 0 0

 .

Since A has 3 pivots, its columns space has dimension 3. The dimension of the row space
of A is the same as the rank of A which is also the dimension of the columns space of
A, and is therefore equal to 3. The dimension of the null space of A is the number of
non-pivot columns, i.e. 5− 3 = 2.

7. Consider a basis B of H. Since H is n-dimensional, B has size n. B is a subset of H, which
in turn is a subset of V , so B consists of n linearly independent vectors in V . But since V
also has dimension n, the Basis Theorem says that B is automatically a basis for V .

8. We first show that T (H) is a subspace of W . In order to do that, we must check that
it is closed under addition and scalar multiplication. Consider two elements T (h1) and
T (h2) in T (H). Their sum is T (h1) + T (h2), which by the linearity property of T , is the
same as T (h1 + h2) ∈ T (H), so T (H) is closed under addition. Now consider an element
T (h) ∈ T (H) and a scalar c. We have cT (h) = T (ch) ∈ T (H), so T (H) is also closed
under scalar multiplication, and is therefore a subspace of W .

Now to show that dim(T (H)) ≤ dim(H), we consider a basis B = {b1, · · · , bn} of H,
where n = dim(H). Then any element of T (H) can be written as a linear combination of
T (b1), · · · , T (bn). To see that, take h ∈ H. Since B is a basis of H, we can write

h = c1 · b1 + · · ·+ cn · bn.

Applying T to both sides and using the linearity of T we obtain

T (h) = c1 · T (b1) + · · ·+ cn · T (bn),

which is certainly a linear combination of T (b1), · · · , T (bn).

It follows that T (b1), · · · , T (bn) is a spanning set for T (H) consisting of n elements. By
the Spanning Set Theorem, a subset of T (b1), · · · , T (bn) is a basis for T (H). This means
that the dimension of T (H) is at most n.

9. We have in general

dim(Nul(A)) + rank(A) = n, the number of columns of A.

In our case n = 9, so
rank(A) = 9− 2 = 7.
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10. The echelon form of A is 
'&%$ !"#2 −3 6 2 5
0 0 '&%$ !"#3 −1 1
0 0 0 '&%$ !"#1 3
0 0 0 0 0

 .

Since A has 3 pivot columns, the dimension of its column space is 3, which is the same as
the dimension of its row space and the same as the rank of A. The dimension of the null
space of A is the number of non-pivot columns, i.e. 5− 3 = 2.

11. The rank of AT is the same as the rank of A, i.e. it is equal to 3. The dimension of the
row space of A is also equal to the rank of A, i.e. it is 3. Since

dim(Nul(A)) + rank(A) = n, the number of columns of A,

and n = 8 in our case, it follows that the dimension of the null space of A is 8− 3 = 5.

12. The equation Ax = b is consistent if and only if the augmented matrix [A b] doesn’t have
a pivot in the last column. This happens if and only if the matrices A and [A b] have the
same pivot columns, if and only if they have the same number of pivot columns. Since the
number of pivot columns of a matrix equals its rank, this happens if and only if the rank
of A equals the rank of [A b]. Summing up, we have that the equation Ax = b is consistent
if and only if the rank of A equals the rank of [A b].

13. We have

uvT =

 2 −2 −6
−3 3 9
5 −5 −15

 .

Notice that the 2nd and 3rd columns of this matrix are multiples of the first one, so the
columns space of uvt is generated by its first column, so the rank of uvT is 1.

This holds much more generally: for any two nonzero column vectors u, v ∈ Rn, the matrix

uvT has rank 1. Let’s check this in the case when u is as above, and v =

 a
b
c

 is an

arbitrary nonzero vector. Then the columns of uvT are just

a · u, b · u, and c · u.

Since not all a, b, c are equal to zero, it follows that the column space of uvT is generated
by the vector u, which is therefore a basis for Col(uvT ), hence the rank of uvT is 1.

14. a) By definition,
P
D←F

= ([f1]D, [f2]D, [f3]D) .

We have

[f1]D =

 2
−1
1

 , [f2]D =

 0
3
1

 , [f3]D =

 −3
0
2

 ,

so

P
D←F

=

 2 0 −3
−1 3 0
1 1 2

 .
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b) [x]D is given by
[x]D = P

D←F
· [x]F ,

where

[x]F =

 1
−2
2

 .

It follows that

[x]D =

 2 0 −3
−1 3 0
1 1 2

 ·
 1
−2
2

 =

 −4
−7
3

 .

15. Denote the basis elements of B by b1, b2, b3, and the basis elements of C by c1, c2, c3. The
columns of P

C←B
are the C-coordinate vectors of b1, b2, b3, namely

[b1]C =

 1
−2
1

 , [b2]C =

 3
−5
4

 , [b3]C =

 0
2
3

 .

It follows that

P
C←B

=

 1 3 0
−2 −5 2
1 4 3

 .

We would like to calculate the B-coordinate vector [p]B of p = −1 + 2t. We have

P
C←B
· [p]B = [p]C =

 −1
2
0

 ,

so in order to find [p]B we need to solve the system of equations whose augmented matrix
is  1 3 0 −1

−2 −5 2 2
1 4 3 0

 .

Row-reducing, we obtain that 1 3 0 −1
−2 −5 2 2
1 4 3 0

 ∼
 1 0 0 5

0 1 0 −2
0 0 1 1

 ,

so

[p]B =

 5
−2
1

 .

This means that p = 5b1 − 2b2 + b3, or

−1 + 2t = 5 · (1− 2t + t2)− 2 · (3− 5t + 4t2) + 1 · (2t + 3t2).
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