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1. We first need to determine whether A− 4I is invertible:

A− 4I =

 −1 0 −1
2 −1 1
−3 4 1

 ∼
 1 0 1

0 1 1
0 0 0


so it is not invertible. It follows that λ = 4 is an eigenvalue of A. To find an eigenvector
corresponding to the eigenvalue 4, we need to solve the system of equations

(A− 4I)x = 0.

We can read off the solutions to this system from the reduced echelon form of A − 4I
above. They are 

x1 = −x3

x2 = −x3

x3 free

so an eigenvalue (which is also a basis for the eigenspace corresponding to the eigenvalue
λ = 4) is  −1

−1
1


2. A is upper-triangular, so its eigenvalues are the diagonal entries, namely 0, 2,−1.

B is lower-triangular, so its eigenvalues are the diagonal entries, namely 4, 0,−3.

(Convince yourselves that this is true!)

3. [
0 1
0 0

]

This has only 0 as an eigenvalue. The corresponding eigenspace has the vector
[

1
0

]
as a

basis.

4. We have

A ·


1
1
...
1

 =


s
s
...
s

 = s ·


1
1
...
1

 ,

1



so


1
1
...
1

 is an eigenvector with eigenvalue s.

If the columns sums are equal to s, this means that the row sums of AT are all s, so s is
an eigenvalue for AT . But A and AT have the same eigenvalues, so s is still an eigenvalue
for A.

5. det(A− λI) = (λ− 3)2, so A has 3 as an eigenvalue with multiplicity 2.

det(B − λI) = λ2 − 11λ+ 40, so the complex eigenvalues of B are given by

λ1,2 =
−1± i

√
39

2
.

B has no real eigenvalues!

6. Cofactor expansion along the 3rd row of A yields

det(A− λI) = (2− λ)(−1− λ)(4− λ),

so A has eigenvalues 2,−1 and 4.

Cofactor expansion along the 3rd column of B yields

det(B − λI) = (3− λ)(λ− 5)(λ− 10),

so B has eigenvalues 3, 5 and 10.

7. Row-reducing the matrix A− 5I we get

A− 5I ∼


0 −2 6 −1
0 −2 h 0
0 0 0 4
0 0 0 −4

 ∼


0 76540123−2 6 −1
0 0 h− 6 1
0 0 0 '&%$ !"#4
0 0 0 0

 .
The eigenspace for λ = 5 is precisely the null space of the matrix A − 5I. This is two
dimensional if and only if A− 5I has two nonpivot columns. The first column of A− 5I is
not a pivot, while the 2nd and 4th columns are pivot columns. It follows that A− 5I has
exactly two nonpivot columns if and only if its 3rd column is not a pivot column, if and
only if h− 6 = 0, if and only if h = 6.

8. Since Q is invertible, it has an inverse Q−1, so

Q−1AQ = Q−1(QR)Q = RQ = A1,

i.e. A and A1 are similar.

9. Since the sum of the dimensions of the distinct eigenspaces corresponding to the eigenvalues
of A is 3 + 2 = 5, which is equal to the size of the matrix A, Theorem 7 says that A is
diagonalizable.
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10. The characteristic equation det(A− λI) = 0 for A is

0 = λ2 − 3λ+ 2 = (λ− 2)(λ− 1),

with roots 2 and 1, so the eigenvalues of A are 2 and 1. One can check (do it!) that

v =
[

3
1

]
, and w =

[
4
1

]
are eigenvalues for λ = 2 and λ = 1 respectively. Thus we can use the matrix P = [v w]
to diagonalize A, and we get that

P−1AP = D =
[

2 0
0 1

]
,

or equivalently,
A = PDP−1.

Taking k-th powers, we obtain

Ak = (PDP−1)k = PDkP−1 = P

[
2 0
0 1

]
P−1

=
[

3 4
1 1

]
·
[

2k 0
0 1k

]
·
[
−1 4
1 −3

]
=
[

4− 3 · 2k 12 · 2k − 12
1− 2k 4 · 2k − 3

]
.

11. For the matrix A, the multiplicity of λ = 4 is 2, while the dimension of the corresponding
eigenspace is just 1 (check this!), so by Theorem 7, A is not diagonalizable.

We first calculate the eigenvalues of B. The characteristic polynomial is given by

det(B − λI) = −(λ+ 3) · (λ− 5)2,

so the eigenvalues are λ = −3, with multiplicity 1, and λ = 5, with multiplicity 2. Now
we compute the eigenspaces corresponding to λ = −3 and λ = 5.

The eigenspace E−3 corresponding to λ = −3 is given by the solutions to the equation

(B + 3I) · x = 0,

whose coefficient matrix  −4 −16 4
6 16 −2
12 16 4


is row equivalent to  1 0 1

0 1 −1/2
0 0 0

 ,
so x3 is the only free variable, so taking x3 = 2 we get that v =

 −2
1
2

 is a basis for E−3.

3



The eigenspace E5 corresponding to λ = 5 is given by the solutions to the equation

(B − 5I) · x = 0,

whose coefficient matrix  −12 −16 4
6 8 −2
12 16 −4


is row equivalent to  1 4/3 −1/3

0 0 0
0 0 0

 ,
so x2, x3 are free variables. Taking x2 = 3, x3 = 0 and x2 = 0, x3 = 3 we get that

w1 =

 −4
3
0

 and w2 =

 1
0
3

 form a basis for E5.

Since the dimensions of the eigenspaces are equal to the multiplicities of the corresponding
eigenvalues, it follows from Theorem 7 that B is diagonalizable, and we can take P =
[v w1 w2] to be the matrix that diagonalizes B. More precisely, we have

P−1BP =

 −3 0 0
0 5 0
0 0 5

 .
12. If A is diagonalizable, then there exists an invertible matrix P such that P−1AP = D is

diagonal. Since D is a product of invertible matrices, it is in turn invertible, and D−1 is
clearly diagonal. It follows that

D−1 = (P−1AP )−1 = P−1A−1P,

i.e. A−1 is similar to the diagonal matrix D−1, so it is diagonalizable.

13. a) T (2− t+ t2) = 2− t+ t2 + t2 · (2− t+ t2) = 2− t+ 3t2 − t3 + t4.

b) We need to show that T (p + q) = T (p) + T (q) and T (c · p) = c · T (p) when p, q ∈ P2

and c ∈ R. Consider then an arbitrary c ∈ R, and arbitrary polynomials p, q of degree at
most two. We have

T (p+ q) = p+ q + t2(p+ q) = (p+ t2p) + (q + t2q) = T (p) + T (q)

and
T (cp) = cp+ t2 · cp = c(p+ t2p) = c · T (p),

so T is indeed linear.

c) Denote B = {1, t, t2} and C = {1, t, t2, t3, t4}, the bases for P2 and P4 respectively. We
have

T (1) = 1 + t2, so [T (1)]C =


1
0
1
0
0

 ,
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T (t) = t+ t3, so [T (t)]C =


0
1
0
1
0

 ,

T (t2) = t2 + t4, so [T (t2)]C =


0
0
1
0
1

 ,
It follows that the matrix of T relative to the bases B and C is

1 0 0
0 1 0
1 0 1
0 1 0
0 0 1

 .

d) If p is in the kernel of T , then

0 = T (p) = p+ t2 · p = (1 + t2)p.

A product of polynomials is zero if and only if one of them is zero, but since 1 + t2 6= 0, it
follows that p must be zero. (Equivalently, you can check that the null space of the matrix
of T relative to the bases B, C is trivial)

Since the kernel of T is 0, T is one-to-one, so a basis for its image consists of the images
of the elements of the basis B: T (1) = 1 + t2, T (t) = t+ t3 and T (t2) = t2 + t4.

14. If B is a basis of eigenvectors of A, then [T ]B is diagonal. To find such a basis, we first
find the eigenvalues of A. The characteristic equation

λ2 − 5λ = 0

has solutions λ = 0 and λ = 5, which are therefore the eigenvalues of A. A basis for the

eigenspace E0 corresponding to λ = 0 is given by the vector v =
[

3
1

]
. A basis for the

eigenspace E5 corresponding to λ = 5 is given by the vector w =
[

2
−1

]
. It follows that

B = {v, w} is a basis in which

[T ]B =
[

0 0
0 5

]
.

15. a) Since A is similar to B, there exist an invertible matrix P such that P−1AP = B. Since
B is a product of invertible matrices, it must be invertible. We have

B−1 = (P−1AP )−1 = P−1A−1P,

which says that A−1 is similar to B−1.
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b) As before, there exist P such that P−1AP = B. Squaring this equality we obtain

(P−1AP )2 = B2,

but
(P−1AP )2 = P−1AP · P−1AP = P−1A2P,

so that P−1A2P = B2, hence A2 is similar to B2.

c) If B is similar to A then P−1BP = A for some invertible matrix P . If C is similar to
A then Q−1BQ = A for some invertible matrix Q. It follows that

P−1BP = Q−1CQ,

or by multiplying with Q on the left and Q−1 on the right, that

(QP−1)B(PQ−1) = C.

Note that if we let R = PQ−1, then R−1 = QP−1, so

R−1BR = C,

i.e. B is similar to C.

d) We have

B · P−1x = P−1AP · P−1x
P ·P−1=I= P−1 ·Ax Ax=λx= P−1 · λx = λ · P−1x,

so P−1x is an eigenvector of B corresponding to the eigenvalue λ.

e) The rank of a matrix doesn’t change when it is multiplied (on the left or right) with
an invertible matrix. If A is similar to B, then P−1AP = B for some invertible matrix P .
But since B = P−1AP is obtained from A by multiplications with invertible matrices P
and P−1, it follows that A and B have the same rank.
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