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1. We first need to determine whether A — 47 is invertible:

-1 0 -1
-3 4 1

o O =
o = O

1
1
0

so it is not invertible. It follows that A = 4 is an eigenvalue of A. To find an eigenvector
corresponding to the eigenvalue 4, we need to solve the system of equations

(A—4l)x = 0.

We can read off the solutions to this system from the reduced echelon form of A — 47
above. They are

Tr1 — —I3
To = —I3
x3 free

so an eigenvalue (which is also a basis for the eigenspace corresponding to the eigenvalue
A=4)is
-1
-1
1
2. A is upper-triangular, so its eigenvalues are the diagonal entries, namely 0,2, —1.

B is lower-triangular, so its eigenvalues are the diagonal entries, namely 4,0, —3.

oo

1
This has only 0 as an eigenvalue. The corresponding eigenspace has the vector [ 0 } as a

(Convince yourselves that this is true!)

basis.
4. We have
1 1
1 s 1
A- =] .| =s )
1 s 1



so | . | is an eigenvector with eigenvalue s.
1
If the columns sums are equal to s, this means that the row sums of A7 are all s, so s is

an eigenvalue for A”. But A and AT have the same eigenvalues, so s is still an eigenvalue
for A.

. det(A — AI) = (A —3)%, so A has 3 as an eigenvalue with multiplicity 2.
det(B — AI) = A2 — 11X + 40, so the complex eigenvalues of B are given by

B has no real eigenvalues!
. Cofactor expansion along the 3rd row of A yields
det(A—AI)=(2—=X)(-1=XN)(4—=N),

so A has eigenvalues 2, —1 and 4.

Cofactor expansion along the 3rd column of B yields
det(B — AI) = (3 = A)(A = 5)(A — 10),
so B has eigenvalues 3,5 and 10.

. Row-reducing the matrix A — 51 we get

0 -2 6 -1 0 2 6 -1
0 -2 h 0 0 0 h—6 1
A=SI~ g 0 0 4 [~]o o 0 @
0 0 0 —4 0 0 0 0

The eigenspace for A = 5 is precisely the null space of the matrix A — 51. This is two
dimensional if and only if A — 5] has two nonpivot columns. The first column of A — 57 is
not a pivot, while the 2nd and 4th columns are pivot columns. It follows that A — 51 has
exactly two nonpivot columns if and only if its 3rd column is not a pivot column, if and
only if h — 6 = 0, if and only if h = 6.

. Since @ is invertible, it has an inverse Q7 !, so
Q7'AQ = QT(QR)Q = RQ = Ay,
i.e. A and A; are similar.

. Since the sum of the dimensions of the distinct eigenspaces corresponding to the eigenvalues
of Ais 3+ 2 = 5, which is equal to the size of the matrix A, Theorem 7 says that A is
diagonalizable.



10. The characteristic equation det(A — AI) = 0 for A is
0=XA-32+2=(\—-2)(\—1),

with roots 2 and 1, so the eigenvalues of A are 2 and 1. One can check (do it!) that

SHEE

are eigenvalues for A = 2 and A = 1 respectively. Thus we can use the matrix P = [v w]
to diagonalize A, and we get that

s o200
PAP_D_[Ol,

or equivalently,

A=PDP L

Taking k-th powers, we obtain

AF = (PDP~ YWk = ppDkp~l = p [ Z ? ] p!

_[3 4] 2" 0] [-1 4] _[4-3-2" 12.2F-12
11 0 1% 1 3| | 1-28 4.2v-3 |°
11. For the matrix A, the multiplicity of A = 4 is 2, while the dimension of the corresponding
eigenspace is just 1 (check this!), so by Theorem 7, A is not diagonalizable.

We first calculate the eigenvalues of B. The characteristic polynomial is given by
det(B—X)=—(A+3)-(A=5)%

so the eigenvalues are A\ = —3, with multiplicity 1, and A = 5, with multiplicity 2. Now
we compute the eigenspaces corresponding to A = —3 and A = 5.

The eigenspace E_3 corresponding to A = —3 is given by the solutions to the equation
(B+3I)-x=0,

whose coeflicient matrix

-4 —-16 4
6 16 -2
12 16 4
is row equivalent to
10 1
01 -1/2 |,
00
-2
so xg is the only free variable, so taking x3 = 2 we get that v = 1 is a basis for F_g3.



12.

13.

The eigenspace E5 corresponding to A = 5 is given by the solutions to the equation

(B—=5I)-2=0,
whose coeflicient matrix )
-12 -16 4
6 8 =2
12 16 —4
is row equivalent to )
1 4/3 -1/3
0 O 0 ,
| 0 0 0
SO g9, x3 are free variables. Taking zo = 3,23 = 0 and zo = 0,23 = 3 we get that
—4 1
wy = 3 and wy = | 0 | form a basis for Es.
0 3

Since the dimensions of the eigenspaces are equal to the multiplicities of the corresponding
eigenvalues, it follows from Theorem 7 that B is diagonalizable, and we can take P =
[v wy we] to be the matrix that diagonalizes B. More precisely, we have

-3 0 0
P'BP=| 0 50
0 0 5
If A is diagonalizable, then there exists an invertible matrix P such that P71AP = D is
diagonal. Since D is a product of invertible matrices, it is in turn invertible, and D! is
clearly diagonal. It follows that

Dl =(PlAP)"t =P AP,
i.e. A~!is similar to the diagonal matrix D~!, so it is diagonalizable.

a) T(2—t+t2)=2—t+2+12- (2—t+t3) =2t +32 -3 + ¢4

b) We need to show that T'(p + ¢q) = T'(p) + T'(¢) and T'(c-p) = c-T(p) when p,q € P
and ¢ € R. Consider then an arbitrary ¢ € R, and arbitrary polynomials p, ¢ of degree at
most two. We have

Tlp+q)=p+a+t°(p+aq) = (p+°p) + (¢ +t7q) = T(p) + T(q)

and
T(cp) =cp+ 2. cp = c(p+ t2p) =c-T(p),
so T is indeed linear.

c) Denote B = {1,t,t2} and C = {1,t,t,3,t*}, the bases for Py and P, respectively. We
have

T(1) =1+t so [T(1)]c =

O O = O



14.

15.

T(t) =t+t3, so [T(t)]e

Il
OO RO

)

0
0
T(#?) =t? +t*, so [T(t})])ec = l 1
0
1
C

9

It follows that the matrix of T relative to the bases B and C is

1 00
010
1 01
010
0 01

d) If p is in the kernel of 7', then
0=T(p)=p+t*-p=(1+)p.

A product of polynomials is zero if and only if one of them is zero, but since 142 # 0, it
follows that p must be zero. (Equivalently, you can check that the null space of the matrix
of T relative to the bases B, C is trivial)

Since the kernel of T is 0, T is one-to-one, so a basis for its image consists of the images
of the elements of the basis B: T(1) = 1+ t2, T(t) = t +t> and T(t?) = > + t*.

If B is a basis of eigenvectors of A, then [Tz is diagonal. To find such a basis, we first
find the eigenvalues of A. The characteristic equation

A2 —5\=0

has solutions A = 0 and A = 5, which are therefore the eigenvalues of A. A basis for the

3 ] A basis for the

eigenspace Fy corresponding to A = 0 is given by the vector v = [ 1

eigenspace Ej5 corresponding to A = 5 is given by the vector w = [

[T]B:[g g]

a) Since A is similar to B, there exist an invertible matrix P such that P~"'AP = B. Since
B is a product of invertible matrices, it must be invertible. We have

1 ] It follows that

B = {v,w} is a basis in which

Bl = (P tAP) ' =pPlA7lP,

which says that A~! is similar to B~



b) As before, there exist P such that P~'AP = B. Squaring this equality we obtain
(P~1AP)? = B,

but
(P7LAP)> = P7'AP . P71AP = P71 AP,

so that P~1A2P = B2, hence A? is similar to B>.

c) If B is similar to A then P~'BP = A for some invertible matrix P. If C is similar to
A then Q~'BQ = A for some invertible matrix Q. It follows that

P~ 'BP =Q 'CqQ,
or by multiplying with @ on the left and Q! on the right, that
QP HB(PQ™) = C.

Note that if we let R = PQ ™!, then R~! = QP !, so

R 'BR=C,
i.e. B is similar to C.
d) We have
B-Plz=pP AP . plp PP pol fp 422N po1 yp — 2L Py,

so P~z is an eigenvector of B corresponding to the eigenvalue \.

e) The rank of a matrix doesn’t change when it is multiplied (on the left or right) with
an invertible matrix. If A is similar to B, then P~'AP = B for some invertible matrix P.
But since B = P~1AP is obtained from A by multiplications with invertible matrices P
and P!, it follows that A and B have the same rank.



