Worksheet 7

Claudiu Raicu

October 8, 2010

1. Let
$$u = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
, $v = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$, $x = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$. Compute the quantities
a) $u \cdot v$, $v \cdot u$, $\frac{v \cdot u}{u \cdot u}$.
b) $\left(\frac{u \cdot v}{v \cdot v}\right) v$.
c) $||v||$.
d) $||x||$.

- 2. Find a unit vector in the direction of $\begin{bmatrix} 7/4\\ 1/2\\ 1 \end{bmatrix}$.
- 3. Find the distance between $u = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$ and $z = \begin{bmatrix} -4 \\ -1 \\ 8 \end{bmatrix}$.
- 4. Determine which pairs of vectors are orthogonal

a)
$$u = \begin{bmatrix} 12\\3\\-5 \end{bmatrix}$$
 and $z = \begin{bmatrix} 2\\-3\\3 \end{bmatrix}$.
b) $u = \begin{bmatrix} 3\\2\\-5\\0 \end{bmatrix}$ and $z = \begin{bmatrix} -4\\1\\-2\\6 \end{bmatrix}$.

5. Show that the set W of vectors orthogonal to $u = \begin{bmatrix} 5 \\ -6 \\ 7 \end{bmatrix}$ is a vector space. Find a basis for W.

6. Let $W = \text{Span}\{v_1, \dots, v_p\}$. Show that if x is orthogonal to each v_j , for $1 \le j \le p$, then x is orthogonal to every vector in W.

7. Show that $\{u_1, u_2, u_3\}$ is an orthogonal basis of \mathbb{R}^3 , where $u_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$, $u_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$,

$$u_3 = \begin{bmatrix} 1\\1\\4 \end{bmatrix}$$
. Then express $x = \begin{bmatrix} 5\\-3\\1 \end{bmatrix}$ as a linear combination of the *u*'s.

8. Compute the distance from $\begin{bmatrix} 3\\1 \end{bmatrix}$ to the line through $\begin{bmatrix} 8\\6 \end{bmatrix}$ and the origin.

9. Let U be a square matrix with orthonormal columns. Explain why U is invertible. -

10. Let
$$y = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}$$
, $v_1 = \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}$, $v_2 = \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix}$. Find the closest point to y in the subspace W spanned by v_1 and v_2 . Find the distance from y to W .

W spanned by v_1 and v_2 . Find the distance from y to W.

11. Let
$$y = \begin{bmatrix} 7\\9 \end{bmatrix}$$
, $u_1 = \begin{bmatrix} 1/\sqrt{10}\\-3/\sqrt{10} \end{bmatrix}$, and $W = \operatorname{Span}\{u_1\}$.

-. .

~ 7

- a) Let U be the 2 × 1 matrix whose only column is u_1 . Compute $U^T \cdot U$ and $U \cdot U^T$.
- b) Compute $\operatorname{proj}_W(y)$ and $(U \cdot U^T) \cdot y$.
- 12. Let A be an $m \times n$ matrix. Prove that every vector x in \mathbb{R}^n can be written in the form x = p + u, where p is in Row(A) and u is in Nul(A). Also, show that if the equation Ax = b is consistent, then there is a unique p in Row(A) such that Ap = b.
- 13. Find an orthogonal basis for the column space of the matrix

$$\begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ -1 & 5 & -2 \\ 3 & -7 & 8 \end{bmatrix}.$$

14. Find the QR-factorization of the matrix

$$\begin{bmatrix} 1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{bmatrix}.$$

15. Suppose that A = QR, where Q is an $m \times n$ matrix and R is $n \times n$. Show that if the columns of A are linearly independent, then R must be invertible. [Hint: Study the equation Rx = 0, and use the fact that A = QR]