
Worksheet 7 - Solutions

Claudiu Raicu

October 8, 2010

1. a) u · v = v · u = 8. u · u = 5, so
v · u
u · u

= 8/5.

b) v · v = 52, so
(u · v

v · v

)
v =

8
52
·
[

4
6

]
=
[

8/13
12/13

]
.

c) ||v|| =
√

v · v = 2
√

13

d) ||x|| =
√

x · x = 7.

2. If v =

 7/4
1/2
1

, the unit vector in the direction of v is 1
||v|| · v. We have ||v|| =

√
v · v =

√
69/4, so

1
||v||
· v =

1√
69
·

 7
2
4

 .

3. The distance between u and z is ||u− z|| =
√

(u− z) · (u− z). Since u− z =

 4
−4
−6

, we

get ||u− z|| = 2
√

17.

4. a) u · z = 0, so u and z are orthogonal.

b) u · z = 0, so u and z are orthogonal.

5. We show that W is closed under addition and multiplication by scalars. Let v1, v2 ∈ W
and c ∈ R. We have u · v1 = u · v2 = 0, so u · (v1 + v2) = u · v1 + u · v2 = 0. Also,
u · (cv1) = c(u · v1) = 0, thus W is a vector space.

Alternatively, we note that W coincides with the null space of the matrix

A = uT = [5 − 6 7] ∼ ['&%$ !"#1 − 6/5 7/5],

so it is a vector space. A has only one pivot column, and its null space consists of vectors

x =

 x1

x2

x3

, with x1 = 6/5x2 − 7/5x3. We get

x =

 6/5x2 − 7/5x3

x2

x3

 =
x2

5
·

 6
5
0

− x3

5
·

 7
0
−5

 ,

1



so a basis for W is


 6

5
0

 ,

 7
0
−5

.

6. Any vector v in W is a linear combination v = c1 · v1 + · · · + cp · vp, for some scalars
c1, · · · , cp. We get

x · v = x · (c1 · v1 + · · ·+ cp · vp) = c1 · (x · v1) + · · ·+ cp · (x · vp) = 0,

since x · v1 = · · · = x · vp. It follows that x is orthogonal to v.

7. We have u1 · u2 = u1 · u3 = u2 · u3 = 0, so {u1, u2, u3} is an orthogonal basis of R3. We
have u1 · u1 = 18, u2 · u2 = 9, u3 · u3 = 18, u1 · x = 24, u2 · x = 3, u3 · x = 6, thus

x =
(

u1 · x
u1 · u1

)
· u1 +

(
u2 · x
u2 · u2

)
· u2 +

(
u3 · x
u3 · u3

)
· u3 =

4
3
· u1 +

1
3
· u2 +

1
3
· u3.

8. Let u =
[

3
1

]
and v =

[
8
6

]
. Denote by ũ the projection of the vector u on the line

Span(v). We have

ũ =
(u · v

v · v

)
· v =

3
10
· v =

[
12/5
9/5

]
.

The distance between u and the line spanned by v is equal to the length of the vector

u− ũ =
[

3/5
−4/5

]
. This is ||u− ũ|| = 1.

9. If U has orthonormal columns, then UT · U = I, so U is invertible with inverse UT .

Alternatively, one can notice that any set of orthonormal vectors is linearly independent.
It follows that U has linearly independent columns, so it is invertible.

10. The closest point to y in W is the point ỹ, the projection of y on W . Since {v1, v2} is an
orthogonal basis for W (v1 · v2 = 0), it follows that

ỹ =
(

y · v1

v1 · v1

)
· v1 +

(
y · v2

v2 · v2

)
· v2 = 3v1 + v2 =


−1
−5
−3
9

 .

The distance from y to W is ||y − ỹ||. We have y − ỹ =


4
4
4
4

, so ||y − ỹ|| = 8.

11. a) We have UT · U = [u1 · u1] = [1], and

U · UT =
[

1/10 −3/10
−3/10 9/10

]
=

1
10
·
[

1 −3
−3 9

]
.

b) We have

projW (y) =
(

y · u1

u1 · u1

)
· u1 =

[
−2
6

]
,
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and

(U · UT ) · y =
1
10
·
[

1 −3
−3 9

]
·
[

7
9

]
=

1
10
·
[
−20
60

]
=
[
−2
6

]
.

This is not an accident: whenever U is a matrix with orthonormal columns, and W =
Col(U), we have that for any vector y

projW (y) = (U · UT ) · y.

Can you see why?

12. It is a general fact that for any subspace W ⊂ Rn and any vector x ∈ Rn, x can be written
as the sum of a vector p in W (the projection p = x̂ = prW (x) of x on W ), and a vector
u = x− x̂ orthogonal to W . We apply this in the special case W = Row(A).

We take p = prRow(A)(x) and let u = x − p. We know that Nul(A) = Row(A)⊥ (see the
book for details), so, since u is orthogonal to Row(A), u ∈ Nul(A).

Assume now that the system of equations Ax = b is consistent, and denote by x a particular
solution. Write x = p + u as above, with p ∈ Row(A) and u ∈ Nul(A). We have

b = Ax = A(p + u) = Ap + Au = Ap + 0 = Ap.

(here we have used Au = 0, since u ∈ Nul(A))

To see that p is the unique element of Row(A) with the property that Ap = b, suppose
there exist another one, and call it p′. We have

A(p− p′) = Ap−Ap′ = b− b = 0,

so p− p′ ∈ Nul(A) = Row(A)⊥. But p− p′ ∈ Row(A), so

p− p′ ∈ Row(A) ∩ Row(A)⊥.

Again it is a general fact that for any W , W ∩W⊥ = 0, and applying this in our case we
get p− p′ = 0, so p = p′. (Really, what the above relation says is that p− p′ is orthogonal
on itself, or equivalently ||p−p′|| =

√
(p− p′) · (p− p′) = 0, i.e. p−p′ is a vector of length

0, thus p− p′ = 0.)

13. We use the Gram-Schmidt method. We start with the vectors v1 =


3
1
−1
3

, v2 =


−5
1
5
−7

,

v3 =


1
1
−2
8

, which span the column space of our matrix.

We have v1 · v2 = −40 6= 0, so v1, v2 are not orthogonal. We then replace v2 by v2 −
prSpan{v1}(v2), i.e. set

v′2 = v2 −
(

v2 · v1

v1 · v1

)
· v1 = v2 + 2v1 =


1
3
3
−1

 .
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We have v3 ·v1 = 30 and v3 ·v′2 = −10, so v3 is not orthogonal on Span{v1, v
′
2}. We replace

v3 by v3 − prSpan{v1,v′
2}(v3), i.e. set

v′3 = v3 −
(

v3 · v1

v1 · v1

)
· v1 −

(
v3 · v′2
v′2 · v′2

)
· v′2 = v3 −

3
2
v1 +

1
2
v′2 =


−3
1
1
3

 .

It follows that

{v1, v
′
2, v

′
3} =




3
1
−1
3

 ,


1
3
3
−1

 ,


−3
1
1
3




is an orthogonal basis for the column space of our matrix.

14. We use the Gram-Schmidt method to find an orthogonal basis for the column space of our
matrix (which we call A), and then normalize the vectors to get the orthonormal columns

of the matrix Q. We start with the vectors v1 =


1
−1
−1
1
1

, v2 =


2
1
4
−4
2

, v3 =


5
−4
−3
7
1

,

which span the column space of our matrix A.

We have v1 · v2 = −5 6= 0, so v1, v2 are not orthogonal. We then replace v2 by v2 −
prSpan{v1}(v2), i.e. set

v′2 = v2 −
(

v2 · v1

v1 · v1

)
· v1 = v2 + v1 =


3
0
3
−3
3

 .

We have v3 ·v1 = 20 and v3 ·v′2 = −12, so v3 is not orthogonal on Span{v1, v
′
2}. We replace

v3 by v3 − prSpan{v1,v′
2}(v3), i.e. set

v′3 = v3 −
(

v3 · v1

v1 · v1

)
· v1 −

(
v3 · v′2
v′2 · v′2

)
· v′2 = v3 − 4v1 +

1
3
v′2 =


2
0
2
2
−2

 .

It follows that

{v1, v
′
2, v

′
3} =




1
−1
−1
1
1

 ,


3
0
3
−3
3

 ,


2
0
2
2
−2



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is an orthogonal basis for the column space of our matrix. We now need to normalize in
order to get an orthonormal basis. We have ||v1|| =

√
5, ||v′2|| = 6 and ||v′3|| = 4, so Q has

columns v1/
√

5, v′2/6 and v′3/4, i.e.

Q =


1/
√

5 1/2 1/2
−1/
√

5 0 0
−1/
√

5 1/2 −1/2
1/
√

5 −1/2 1/2
1/
√

5 1/2 −1/2

 .

Since Q is orthogonal, the inverse of Q is QT , so

R = QT ·A =

 √5 −
√

5 4
√

5
0 6 −2
0 0 4

 .

15. Since the columns of A are linearly independent, the equation Ax = 0 has only the trivial
solution x = 0. Suppose now R is not invertible. Since R is a square matrix, its columns
must be linearly dependent, hence the equation Rx = 0 must have a nontrivial solution
x0 6= 0. We obtain

A · x0 = QR · x0 = Q · (R · x0) = Q · 0 = 0,

so x0 is a nontrivial solution to the equation Ax = 0, contradicting the original assumption.
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