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.a)u‘v:v'u:&u-u:5,SOM:8/5.
- u

b) v-v =52, so (ZS)U:;Q[;L} :[182//1133].
o) |lvll = vv-v=2v13
Q) llofl = vET=T.

7/4
. Ifv =1 1/2 |, the unit vector in the direction of v is ﬁ -v. We have [[v|]| = Vv v =
1
v/69/4, so
1 1 ;
_— ) = — -
ol = Ve |
4
. The distance between u and z is ||u — 2|| = \/(u — 2) - (u — 2). Sinceu—2z= | —4 |, we
—6

get ||u — z|| = 2V17.
.a)u-z=0,s0u and z are orthogonal.

b) u-z =0, so u and z are orthogonal.

. We show that W is closed under addition and multiplication by scalars. Let vi,vo € W
and ¢ € R. We have u-vy = u-v9 = 0,0 u-(vy +v2) = u-v; +u-vy = 0. Also,
u- (cv1) = ¢(u-v1) =0, thus W is a vector space.

Alternatively, we note that W coincides with the null space of the matrix
A=ul'=[5 -6 7~[D -6/5 7/5],

so it is a vector space. A has only one pivot column, and its null space consists of vectors

x1
x=| xo |, with z; = 6/5x9 — 7/5x35. We get
3
6/5wy —T/5es ], [6] L [ 7
xr = X9 = E . 5 — E 0 5
I3 0 -5
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so a basis for W is 5 |, 0

. Any vector v in W is a linear combination v = ¢; - vi + -+ + ¢, - v, for some scalars

c1, - ,cp. We get
zv=zc-(cp-vi+--Fcpvp)=cr-(x-v)+- -+ (xvy) =0,

since x - v1 = -+ = x - vp. It follows that x is orthogonal to v.

. We have uj - ug = uy - u3 = ug - uz = 0, so {u, us,u3} is an orthogonal basis of R3. We

have uj -u; =18, uo - ug =9, ug - uz = 18, u; - x = 24, uo - x = 3, ug - * = 6, thus

Uy - T U+ X usg - x 4 1 1
T = S U+ S U2 + U3 = 5 U+ 5 -u2 + 5 - us.
Uy - Ul U2 - U2 us - u3 3 3 3

. Let u = [ i’ ] and v = [ 2 ] Denote by u the projection of the vector u on the line

Span(v). We have
~ (u-v 3 [12/5
v (ﬂ»”‘ﬁ'”‘ [ 9/5 ]
The distance between u and the line spanned by v is equal to the length of the vector

T 3/5 . o
u—u—[_4/5].Thlsls|u—u\|—1.

. If U has orthonormal columns, then UT - U = I, so U is invertible with inverse U .

Alternatively, one can notice that any set of orthonormal vectors is linearly independent.
It follows that U has linearly independent columns, so it is invertible.

The closest point to y in W is the point y, the projection of y on W. Since {v;,v2} is an
orthogonal basis for W (vy - vo = 0), it follows that

—1

~ ‘v -V -5
yz(y 1>-vl+<y 2>-v2:3v1+v2:
V1 - U1 V9 * V9 -3

9

The distance from y to W is ||y — y||. We have y —y = , 80 |ly — 9| = 8.

AR R A

a) We have UT - U = [ug - u1] = [1], and

e T E

b) We have

projy (y) = v o “uUp = 2
Ul - Ul 6 ’
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and
1 1 -3 7 1 —20 -2
. T . —_ — . . = — =
C-U)y=15 [—3 9} [9} 10 [60] [6]
This is not an accident: whenever U is a matrix with orthonormal columns, and W =
Col(U), we have that for any vector y

projy (y) = (U-UT) - y.
Can you see why?

It is a general fact that for any subspace W C R™ and any vector x € R", x can be written
as the sum of a vector p in W (the projection p = & = pry,(z) of x on W), and a vector
u = x — Z orthogonal to W. We apply this in the special case W = Row(A).

We take p = Pryoy(a)(®) and let u = 2 — p. We know that Nul(A) = Row(A)* (see the
book for details), so, since u is orthogonal to Row(A), u € Nul(A).

Assume now that the system of equations Ax = b is consistent, and denote by x a particular
solution. Write z = p + u as above, with p € Row(A) and u € Nul(A). We have

b=Azx=A(p+u)=Ap+ Au= Ap+ 0= Ap.

(here we have used Au = 0, since u € Nul(A))

To see that p is the unique element of Row(A) with the property that Ap = b, suppose
there exist another one, and call it p’. We have

Alp—p)=Ap—Ap' =b-b=0,
so p—p' € Nul(A) = Row(A)*. But p —p’ € Row(A), so
p—p' € Row(A4) NRow(A)L.

Again it is a general fact that for any W, W N W+ = 0, and applying this in our case we
get p—p' =0, s0 p=p'. (Really, what the above relation says is that p — p’ is orthogonal
on itself, or equivalently |[p—p/|| = \/(p—p') - (p —p/) = 0, i.e. p—p' is a vector of length
0, thus p —p' =0.)

3 -5
1 1
We use the Gram-Schmidt method. We start with the vectors v = | 1= E
3 -7
1
1 . .
=y | which span the column space of our matrix.
8
We have vy - v9 = —40 # 0, so vy, vy are not orthogonal. We then replace vy by vy —

prSpan{vl}(UQ), i.e. set

W W =

(]
vézm(v U)-vlzvng?vl:
11
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We have vs-v; = 30 and vz -v) = —10, so v3 is not orthogonal on Span{vy, v4}. We replace
vg by vg — prspan{vwé}(vg), i.e. set

It follows that

3 1 -3

1 3 1
{Ulvvévvé} = 1| 3 ) 1

3 -1 3

is an orthogonal basis for the column space of our matrix.

We use the Gram-Schmidt method to find an orthogonal basis for the column space of our
matrix (which we call A), and then normalize the vectors to get the orthonormal columns

1 2 5
-1 1 —4
of the matrix Q). We start with the vectors v1 = | —1 |, vg = 4 |,vs=1| -3 |,
1 —4 7
1 2 1
which span the column space of our matrix A.
We have vy - v9 = —5 # 0, so v1,v9 are not orthogonal. We then replace vy by vy —
PI'Span{v;} (V2), 1.e. set
3
0
1)/2—1)2—(1}2'2}1)-?}1—1)24-1)1_ 3
v1 - U1 _3
3
We have vz -v; = 20 and vz - v}, = —12, so vs is not orthogonal on Span{vi,v5}. We replace

vg by v3 — prSpan{vl,vé}(Ufi)a Le. set

NN O N

It follows that

1 3 2
-1 0 0
{v1,vh,v5} = 11, 3 |,]| 2
1 -3 2
1 3 —2
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is an orthogonal basis for the column space of our matrix. We now need to normalize in
order to get an orthonormal basis. We have ||v1|| = v/5, |[v}]| = 6 and ||v§|| = 4, so Q has
columns vy /v/5, v /6 and v4/4, i.e.

1/vV/5 1/2  1/2
-1/V/5 0 0
Q=| -1/vV5 1/2 —1/2
1/vV5 —1/2 1/2
1/V/5 1/2 —1/2

Since @ is orthogonal, the inverse of @ is Q7 so

V5 V5 45
R=Q"- A= 0 6 -2
0 0 4

Since the columns of A are linearly independent, the equation Ax = 0 has only the trivial
solution = = 0. Suppose now R is not invertible. Since R is a square matrix, its columns
must be linearly dependent, hence the equation Rx = 0 must have a nontrivial solution
xo # 0. We obtain

Azg=QR-20=Q (R-79)=Q 0=0,

S0 xq is a nontrivial solution to the equation Az = 0, contradicting the original assumption.



