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1. We compute the normal equations

ATAx = AT b.

We have

ATA =
[

3 3
3 11

]
, AT b =

[
6
14

]
.

The system of equations (ATA)x = AT b has augmented matrix[
3 3 6
3 11 14

]
∼
[

1 0 1
0 1 1

]
The unique solution is given by

x̂ =
[
x1

x2

]
=
[

1
1

]
.

The projection of b on the column space of A is given by

b̂ = Ax̂ =

 4
0
2

 .
2. We compute the normal equations

ATAx = AT b.

We have

ATA =

 4 2 2
2 2 0
2 0 2

 , AT b =

 14
4
10

 .
The system of equations (ATA)x = AT b has augmented matrix 4 2 2 14

2 2 0 4
2 0 2 10

 ∼
 1 0 1 5

0 1 −1 −3
0 0 0 0


This has x3 as a free variable and the general solution is given by

x̂ =

 x1

x2

x3

 =

 −x3 + 5
x3 − 3
x3

 =

 5
−3
0

+ x3

 −1
1
1

 .
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The projection of b on the column space of A is given by

b̂ = Ax̂ =


2
2
5
5

 .
3. If x ∈ Nul(A) then Ax = 0, hence ATAx = 0, so x ∈ Nul(ATA). Conversely, if x ∈

Nul(ATA), then ATAx = 0. Multiplying on the left by xT we obtain xTATAx = 0, but
xTAT = (Ax)T , so we get (Ax)T (Ax) = 0, i.e. ||Ax|| =

√
(Ax) · (Ax) =

√
0 = 0, which

says that Ax = 0, so x ∈ Nul(A).

To show the equality of column spaces, note that Col(AT ) = Row(A) and therefore

Nul(A) = (Row(A))⊥ = (Col(AT ))⊥.

A similar argument for ATA, using the fact that ATA is a symmetric matrix ((ATA)T =
ATA) shows that

Nul(ATA) = (Row(ATA))⊥ = (Col(ATA))⊥.

Since Nul(A) = Nul(ATA), it follows that their orthogonal complements, i.e. Col(AT ) and
Col(ATA) have to be equal.

4. Suppose first that ATA is invertible. It follows that Nul(ATA) = 0, but the previous exer-
cise implies that Nul(A) = Nul(ATA) = 0, i.e. the columns of A are linearly independent.

Now, if the columns of A are linearly independent, it follows that Nul(A) = 0. This shows
that Nul(ATA) = Nul(A) = 0, i.e. the columns of ATA are linearly independent. But
ATA is then a square matrix with linearly independent columns, so it must be invertible.

5. We write the system as Ax = b, with

A =
[

1 1
1 1

]
and b =

[
2
4

]
.

We use the normal equations to find the least-squares solutions of the system. We have

ATA =
[

2 2
2 2

]
, AT b =

[
6
6

]
.

The system of equations (ATA)x = AT b has augmented matrix[
2 2 6
2 2 6

]
∼
[

1 1 3
0 0 0

]
This has x2 as a free variable, so the solutions are given by

x̂ =
[
x1

x2

]
=
[
−x2 + 3
x2

]
=
[

3
0

]
+ x2

[
−1
1

]
.

The projection of b on the column space of A is given by

b̂ = Ax̂ =
[

3
3

]
.
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6. We have
〈p, q〉 = p(−1)q(−1) + p(0)q(0) + p(1)q(1) = −10,

||p|| =
√
〈p, p〉 =

√
20 = 2

√
5,

||q|| =
√
〈q, q〉 =

√
59.

To find an orthogonal projection of r on W = Span(p, q) we first compute an orthogonal
basis of W . We replace q by q1 = q − prSpan(p)(q), i.e.

q1 = q − 〈q, p〉
〈p, p〉

· p = q +
1
2
p = 3 +

3
2
t+

3
2
t2.

The projection of r on W is then

projW (r) =
〈r, p〉
〈p, p〉

· p+
〈r, q1〉
〈q1, q1〉

· q1.

We have 〈r, p〉 = −2, 〈r, q1〉 = 9 and 〈q1, q1〉 = 9 so

projW (r) =
−2
20
· p+

9
9
· q1 = 3 +

6
5
t+

8
5
t2.

7. We have
||u+ v||2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉 ,

||u− v||2 = 〈u− v, u− v〉 = 〈u, u〉 − 〈u, v〉 − 〈v, u〉+ 〈v, v〉 .

Subtracting the two relations we obtain

||u+ v||2 − ||u− v||2 = 2(〈u, v〉+ 〈v, u〉) = 4 〈u, v〉 ,

using the symmetry of the inner product (〈u, v〉 = 〈v, u〉). Dividing by 4 the above equality
we get the desired formula.

8. We have

〈f, g〉 =
∫ 1

0
(5t− 3)(t3 − t2)dt =

∫ 1

0
(5t4 − 8t3 + 3t2)dt = [t5 − 2t4 + t3]10 = 0,

〈f, f〉 =
∫ 1

0
(5t− 3)2dt =

[
(5t− 3)3

3 · 5

]1

0

=
8− (−27)

15
=

7
3
,

so ||f || =
√

7/3.

9. We have
det(A− λI) = λ2 − 17λ

so the eigenvalues are 0 and 17. A basis for E0 = Nul(A) consists of the vector
[

1
4

]
,

while a basis for E17 = Nul(A − 17I) consists of the vector
[

4
−1

]
. The two vectors
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together give an orthogonal basis of R2, and to get an orthonormal basis of eigenvectors
of A we have to normalize them by dividing by their length. We get that

P =
[

1/
√

17 4/
√

17
4/
√

17 −1/
√

17

]
is an orthogonal matrix that diagonalizez A, i.e.

P TAP = D =
[

0 0
0 17

]
.

To diagonalize B, we compute

det(B − λI) = (λ− 13)(λ− 7)(λ− 1)

so the eigenvalues are 1 and 7 and 13. A basis for E1 = Nul(A) consists of the vector 2
−1
2

, a basis for E7 = Nul(A − 7I) consists of the vector

 −1
2
2

, and a basis for

E13 = Nul(A − 13I) consists of the vector

 2
−1
2

. The three eigenvectors together give

an orthogonal basis of R3, and to get an orthonormal basis of eigenvectors of B we have
to normalize them by dividing by their length. We get that

P =

 2/3 −1/3 2/3
−1/3 2/3 −1/3
2/3 2/3 2/3


is an orthogonal matrix that diagonalizez B, i.e.

P TBP = D =

 1 0 0
0 7 0
0 0 13

 .
10. If A is orthogonally diagonalizable, A must be a symmetric matrix. Since it is also invert-

ible, it means that A−1 is also a symmetric matrix, so A−1 is orthogonally diagonalizable.

11. If P is orthogonal, then P−1 = P T . Since A is symmetric A = AT = PRTP T , so

PRP T = PRTP T ,

i.e. R = RT is symmeric. Since R is upper triangular and symmetric, it is also lower
triangular, and hence diagonal.

12. a) 3x2
1 − 4x1x2 + 6x2

2 = xTAx, with

A =
[

3 −2
−2 6

]
.

The eigenvalues of A are solutions to the characteristic equation λ2 − 9λ + 14 = (λ −
2)(λ − 7) = 0, i.e. they are 2 and 7, which are positive numbers, hence the quadratic
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form is positive definite. E2 has a basis consisting of the vector
[

2
1

]
, and E7 has a basis

consisting of the vector
[
−1
2

]
. Normalizing, we get

P =
[

2/
√

5 −1/
√

5
1/
√

5 2/
√

5

]
.

b) 9x2
1 − 8x1x2 + 3x2

2 = xTAx, with

A =
[

9 −4
−4 3

]
.

The eigenvalues of A are solutions to the characteristic equation λ2 − 12λ + 11 = (λ −
11)(λ − 1) = 0, i.e. they are 11 and 1, which are positive numbers, hence the quadratic

form is positive definite. E11 has a basis consisting of the vector
[
−2
1

]
, and E1 has a

basis consisting of the vector
[

1
2

]
. Normalizing, we get

P =
[
−2/
√

5 1/
√

5
1/
√

5 2/
√

5

]
.

c) 2x2
1 + 10x1x2 + 2x2

2 = xTAx, with

A =
[

2 5
5 2

]
.

The eigenvalues of A are solutions to the characteristic equation λ2−4λ−21 = (λ−7)(λ+
3) = 0, i.e. they are 7 and −3, which have opposite signs, hence the quadratic form is

indefinite. E7 has a basis consisting of the vector
[

1
1

]
, and E−3 has a basis consisting of

the vector
[
−1
1

]
. Normalizing, we get

P =
[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
.

13. If A,B have positive eigenvalues, the quadratic forms xTAx and xTBx are positive definite,
i.e. xTAx > 0 and xTBx > 0 for all vectors x 6= 0. It follows that the same holds for the
sum of the two quadratic forms

xTAx+ xTBx = xT (A+B)x,

i.e. xT (A+B)x is positive definite, so A+B has only positive eigenvalues.

14. If A is positive definite, then it is orthogonally diagonalizable to a diagonal matrix with
positive entries. Write

P TAP = D =

 λ1 · · · 0
...

. . .
...

0 · · · λn

 .
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Since D has positive entries, we can take their square roots to get a diagonal matrix E,
with

E =


√
λ1 · · · 0
...

. . .
...

0 · · ·
√
λn

 .
We have ET = E, so ETE = E2 = D, which yields

A = PDP T = PEETP T = (PE)(PE)T .

If we let B = (PE)T , we get BTB = A.
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