Algebraic Geometry/Commutative Algebra Seminar, 2017–2018

To volunteer to give a talk, or for anything else regarding the seminar, contact Claudiu Raicu.

Abstracts can be found below.

Fall Schedule

The seminar will meet on Wednesdays, 3:00–4:00pm in 258 Hurley unless otherwise noted. Related events are also listed below.

Date Speaker Title
Wednesday, Aug. 30 Liubomir Chiriac (University of Massachusetts Amherst) Distribution of the Fourier coefficients in pairs of newforms
Wednesday, Sep. 6 Daniele Rosso (Indiana University Northwest) Irreducible components of exotic Springer fibers
Wednesday, Sep. 13
Wednesday, Sep. 20
Wednesday, Sep. 27
Wednesday, Oct. 4 Michael Wibmer (University of Pennsylvania) Free differential Galois groups
Wednesday, Oct. 11, 4-5pm
129 Hayes-Healy Hall
Department Colloquium
Anurag Singh (University of Utah) TBA
Thursday, Oct. 12, 2:30-3:30pm
Anurag Singh (University of Utah) TBA
Wednesday, Oct. 18 No seminar (Fall break)
Wednesday, Oct. 25
Wednesday, Nov. 1
Wednesday, Nov. 8
Wednesday, Nov. 15
Wednesday, Nov. 22 No seminar (Thanksgiving)
Wednesday, Nov. 29
Wednesday, Dec. 6

Abstracts


Aug. 30, 2017

Speaker
Liubomir Chiriac (University of Massachusetts Amherst)
Title
Distribution of the Fourier coefficients in pairs of newforms
Abstract
Given two distinct newforms, I will present several statistical results concerning the joint distribution of their Fourier coefficients, with special emphasis on questions about dominance. The talk will touch upon refined multiplicity one problems in a few different contexts, as well as some applications of a natural generalization of the Sato-Tate conjecture for pairs of newforms.

Sept. 6, 2017

Speaker
Daniele Rosso (Indiana University Northwest)
Title
Irreducible components of exotic Springer fibers
Abstract
The Springer resolution is a resolution of singularities of the variety of nilpotent elements in a reductive Lie algebra. It is an important geometric construction in representation theory, but some of its features are not as nice if we are working in Type C (Symplectic group). To make the symplectic case look more like the Type A case, Kato introduced the exotic nilpotent cone and its resolution, whose fibers are called the exotic Springer fibers. We give a combinatorial description of the irreducible components of these fibers in terms of standard Young bitableaux and obtain an exotic Robinson-Schensted correspondence. This is joint work with Vinoth Nandakumar and Neil Saunders.

Math Department - University of Notre Dame