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Abstract. We describe a software package facilitating computations with symmetric
functions, with an emphasis on the representation theory of general linear and symmetric
groups. As an application, we implement a heuristic method for approximating equivariant
resolutions of modules over polynomial rings with an action of a product of a combination
of general linear and symmetric groups.

1. Introduction

The theory of symmetric functions is a branch of algebraic combinatorics which makes an
appearance in numerous areas of mathematics: representation theory, algebraic geometry,
Galois theory, statistics etc. The need for software that implements fast computations
with symmetric functions is thus a natural consequence of their ubiquity. Stembridge’s
SF Package [Ste95] offers great capabilities for dealing with symmetric functions, with an
emphasis on the algebraic combinatorics point of view. We propose a new package, the
SchurRings package in Macaulay2 [GS], highlighting a representation theoretic perspective
on symmetric functions.

Specifically, our approach to the theory of symmetric polynomials is focused on the
representation theory of general linear and symmetric groups (see [FH91, Mac95] for the
basic theory). One of the guiding problems that accompanied the development of this
project was the problem of computing equivariant resolutions (see Chapter 3). Even for
easy (to define) rings like the homogeneous coordinate rings of Segre and Veronese varieties,
equivariant resolutions are not currently known. For the latest developments in the subject,
see [Sno10,EL11].

The SchurRings package implements the basic arithmetic operations in the representation
rings of general linear and symmetric groups, or products of any combination of such. It
also implements conversion routines between the standard e–, h–, p–, and s–bases (see
Section 2), as well as various plethystic operations. Finally, the high point of the package
is a routine meant to approximate equivariant resolutions of G–modules, for G a product
of general linear and symmetric groups (Section 3).
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2. Symmetric Polynomials

Given a positive integer n and a fieldK, we consider the polynomial ring S = K[x1, · · · , xn].
S has an action of the symmetric group Sn on n letters, given by the permutation of the
variables. A symmetric polynomial in S is one that’s invariant under the action of Sn.

There are four classes of symmetric polynomials that the package SchurRings implements:

(1) (elementary symmetric polynomials)

ek(x1, · · · , xn) =
∑

1≤i1<···<ik≤n
xi1 · · ·xik .

(2) (power–sum polynomials)

pk(x1, · · · , xn) =

n∑
i=1

xki .

(3) (complete symmetric polynomials)

hk(x1, · · · , xn) =
∑
m∈Mk

m,

where Mk denotes the set of monomials of degree k in the variables x1, · · · , xn.
(4) (Schur polynomials) Given a partition λ = (λ1, · · · , λn) of k,

sλ(x1, · · · , xn) =
det(x

λj+n−j
i )

det(xn−ji )
.

Theorem 2.1 (Fundamental Theorem of Symmetric Polynomials, [Mac95, Section I.2]).
We let Rn denote K[x1, · · · , xn]Sn, the subring of S consisting of the collection of symmetric
polynomials. We have

Rn = K[e1, · · · , en] = K[h1, · · · , hn].

If the characteristic of K is zero, then Rn = K[p1, · · · , pn].

In general, Rn has a basis (as aK-vector space) consisting of the polynomials sλ(x1, · · · , xn),
where λ = (λ1, λ2, · · · ) is a partition with at most n parts. If we write eλ for the polyno-
mial

∏
i eλi , and likewise for hλ and pλ, we get that Rn has K-vector space bases (eλ)λ,

(hλ)λ, and (in characteristic zero) (pλ)λ, indexed by partitions with parts of size at most n
(λi ≤ n). One of the primary goals of the SchurRings package is to facilitate a fast transition
between the e–, h–, p–, and s–bases.

Example 2.2. Below we consider the symmetric polynomial

e3(x1, x2, x3)− p3(x1, x2, x3) = x1 · x2 · x3 − (x31 + x32 + x33),

and express it in terms of the s–, e–, h–, and p–bases respectively.

i1 : loadPackage"SchurRings";

i2 : R = symmRing 3;

i3 : symFun = e_3 - p_3;

i4 : sFun = toS symFun

o4 = - s + s

3 2,1
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i5 : eFun = toE sFun

3

o5 = - e + 3e e - 2e

1 1 2 3

i6 : hFun = toH eFun

o6 = h h - 2h

1 2 3

i7 : pFun = toP hFun

1 3 1 2

o7 = -p - -p p - -p

6 1 2 1 2 3 3

An important notion in the theory of symmetric functions and in representation theory
is the notion of plethysm (see [Mac95, Section I.7]). This is an operation on symmetric
polynomials that corresponds to the composition of Schur functors as GL–representations.
It is often referred to as outer plethysm, as opposed to the operation of inner plethysm
which corresponds to applying Schur functors to representations of a symmetric group.
The SchurRings package can deal with both types of plethysm.

Example 2.3. We first compute the decomposition of S2,1(S3(V )) into a sum of irreducible
representations, where V is a vector space of dimension 3, and Sλ denotes the Schur functor
corresponding to the partition λ:

i8 : S = schurRing(s,3,GroupActing => "GL");

i9 : plethysm(s_{2,1},s_3)

o9 = s + s + s + s + s + s + s

8,1 7,2 6,3 6,2,1 5,4 5,3,1 4,3,2

We can also decompose the third symmetric power of the standard representation of the
symmetric group S3:

i10 : T = schurRing(t,3,GroupActing => "Sn");

i11 : symmetricPower(3,t_{2,1})

o11 = t + t + t

3 2,1 1,1,1

3. Equivariant resolutions

Given a group G and a finite dimensional G–representation W over a field K, we can
form the symmetric algebra S = Sym(W ). This is a graded ring whose degree d piece is
Sd = SymdW , the d–th symmetric power of the vector space W . Sd is a G-module, where
the action is induced from the action of G on W . Fixing a basis x1, · · · , xn of W , S can be
identified with the polynomial ring K[x1, · · · , xn]. A (finitely generated, graded) S–module
M is called G–equivariant if it admits an action of the group G which is compatible with
the action of S on M . If this is the case, then M admits an equivariant resolution

F• : F0 ← F1 ← · · · ← Fn,

where
Fi =

⊕
j∈Z

Bij ⊗ S(−j),
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Bij are G–modules, and the differentials in F• are minimal and respect the action of the
group G. The dimensions βij of the vector spaces Bij are the usual Betti numbers associated
to the S–module M . We call Bij the Betti modules of the equivariant module M .

One feature that the SchurRings package implements is the method schurResolution, which
attempts to “guess” the Betti modules of a G–equivariant module M , where G is a product
of a combination of general linear and symmetric groups. The assumption on which the
“guessing” is based is that the differentials in the resolution F• have maximal rank among
all homomorphisms of G–modules between any successive terms Fi, Fi+1. Even though this
assumption is not expected to be true generally, it does hold in many cases of interest: when
M has a linear (or pure) resolution (e.g. Koszul complexes), or when M is the coordinate
ring of some Segre or Veronese varieties, or the coordinate ring of some secant varieties of
such.

Example 3.1. Let G = S3 ×GL(2), the product of the symmetric groups on three letters
and the group of invertible transformations of a vector space V of dimension 2. Let U
denote the permutation representation of S3, and let W = U ⊗ V . We let S = Sym(W ) be
as before, and let M = K be the residue field of S. The resolution of M is known to be
given by the Koszul complex [Eis95, Chapter 17].

i1 : loadPackage"SchurRings";

i2 : A = schurRing(a,3,GroupActing => "Sn");

i3 : B = schurRing(A,b,2,GroupActing => "GL");

i4 : rep = (a_3 + a_{2,1}) * b_1;

i5 : d = dim rep

o5 = 6

The symmetric functions corresponding to the characters of S3 are linear combinations of
aλ, where λ is a partition of 3, while the characters of GL(2) are combinations of bλ, where
λ is a partition with at most two parts. In particular, the character of U is a3 + a2,1,
while that of V is b1. Therefore the character of W is rep, the product of the two. As
a G–representation, M is trivial and 1–dimensional, so its character is the product of the
characters of the trivial representations of S3 and GL(2) respectively:

i6 : M = {a_3 * 1_B};

i7 : sR = schurResolution(rep,M,DegreeLimit => d)

o7 = {{(0, a b )}, {(1, (a + a )b )}, {(2, (a + a )b

3 () 3 2,1 1 2,1 1,1,1 2

------------------------------------------------------------

+ (2a + 2a )b )}, {(3, a b + (a + 3a +

3 2,1 1,1 1,1,1 3 3 2,1

------------------------------------------------------------

a )b )}, {(4, (a + a )b + (2a +

1,1,1 2,1 2,1 1,1,1 3,1 3

------------------------------------------------------------

2a )b )}, {(5, (a + a )b )}, {(6, a b )}}

2,1 2,2 3 2,1 3,2 3 3,3

The Betti modules are returned as a list of lists of pairs, where each list of pairs corresponds
to a term Fi in the equivariant resolution F•, and each pair consists of an integer j, and the
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character of the corresponding Betti module Bij . In our case, the lists of pairs each consists
of a single element, because the resolution is linear.

To check that we obtained the correct answer in this example, we need to verify that the
Betti modules are exterior powers of W . We check this for i = 3:

i8 : sR#3

o8 = {(3, a b + (a + 3a + a )b )}

1,1,1 3 3 2,1 1,1,1 2,1

i9 : exteriorPower(3,rep)

o9 = a b + (a + 3a + a )b

1,1,1 3 3 2,1 1,1,1 2,1

One caveat of our method of constructing equivariant resolutions is that it assumes
“maximal cancellation” between the Betti modules, i.e. that there are no irreducible
G–representations that are shared by any two modules Bi,j and Bi+1,j . Nevertheless, our
method yields a lower bound for the Betti modules, by detecting the syzygies whose pres-
ence is dictated by representation theory alone, independently of the ring structure of S
and of the S–module structure of M .

Example 3.2. We end with the example of the equivariant resolution of the homogeneous
coordinate ring of the cubic Veronese embedding of P2 (see also [Chi02, Section 2.6]):

i10 : S = schurRing(s,3);

i11 : rep = s_{3};

i12 : M = {1_S,s_{3},s_{6},s_{9},s_{12},s_{15},s_{18},

s_{21},s_{24},s_{27}};

i13 : schurResolution(rep,M,DegreeLimit => 9)

o13 = {{(0, s )}, {(2, s )}, {(3, s + s + s +

() 4,2 6,2,1 5,4 5,3,1

-----------------------------------------------------------

s )}, {(4, s + s + s + s + s +

4,3,2 7,4,1 7,3,2 6,5,1 6,4,2 6,3,3

-----------------------------------------------------------

s + s )}, {(5, s + s + s + s +

5,5,2 5,4,3 8,5,2 8,4,3 7,6,2 7,5,3

-----------------------------------------------------------

s + s + s )}, {(6, s + s + s +

7,4,4 6,6,3 6,5,4 9,5,4 8,7,3 8,6,4

-----------------------------------------------------------

s )}, {(7, s )}, {(9, s )}}

7,6,5 9,7,5 9,9,9

The shape of the resolution suggests that the homogeneous coordinate ring of the cubic
Veronese surface is Gorenstein, which is indeed the case, as can be checked by a quick
computation of its Hilbert series.
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