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Abstract. We describe a Macaulay2 package for computing Schur complexes. This pack-
age expands on the ChainComplexOperations package by David Eisenbud.

1. Introduction

Let R be a commutative ring. The goal of this article is to describe the Macaulay2
package SchurComplexes, which computes the Schur complex Sλ(F ) associated to a bounded
complex F of finitely generated free R-modules and a partition λ.

Schur complexes are a simultaneous generalization of the symmetric and exterior power
operations on complexes. The notion of a Schur complex was introduced by Nielsen in [Nie78]
in the characteristic 0 setting, and it was generalized to the characteristic free setting by
Akin–Buchsbaum–Weyman in [ABW82].

The importance of such operations on complexes is illustrated by Walker’s recent proof of
the weak Buchsbaum–Eisenbud–Horrocks conjecture [Wal17, Theorem 2.4] in which exterior
and symmetric squares of complexes play a crucial role. Walker’s breakthrough work led
to Eisenbud’s implementation of the second exterior and symmetric power for complexes in
the Macaulay2 package ChainComplexOperations. The work suggests that properties of
Schur complexes should be further developed. Our goal here is to expand on this package
by implementing the construction of an arbitrary Schur complex.

In Section 2, we provide some background on Schur complexes, following the detailed
treatment in Weyman’s book [Wey03, Section 2.4]. In particular, we recall the “straighten-
ing algorithm” of [ABW82] which expresses a Z/2-graded tableau as a Z-linear combination
of so-called “standard” Z/2-graded tableaux; the implementation of this algorithm is the
key component of the SchurComplexes package. Section 3 contains some examples of com-
putations using SchurComplexes.

2. Background on Schur complexes

This section closely follows [Wey03, Section 2.4]. Let F = (F0 ← F1 ← · · · ← Fd) be
a bounded complex of finitely generated free R-modules. Denote by Feven (resp. Fodd) the
direct sum of the even (resp. odd) degree components of F , and choose bases {e1, . . . , em}
and {f1, . . . , fn} of Fodd and Feven, respectively, which are unions of bases of the Fi.
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2.1. Exterior powers of complexes. Fix a positive integer r, and let T r(F ) denote the
rth tensor power of F . T r(F ) may be equipped with a Σr-action in the following way:

σ · (x1 ⊗ · · · ⊗ xr) = ±xσ−1(1) ⊗ · · · ⊗ xσ−1(r),

where the xi are homogeneous elements of F , and the sign is determined by declaring that
transposing the elements xi and xj contributes the sign (−1)|xi||xj |.

Definition 2.1. The rth exterior power
∧r F is defined to be the subcomplex of T r(F )

consisting of antisymmetric tensors, i.e. elements x ∈ T r(F ) such that σ · x = (−1)sign(σ)x
for all x.

There is a canonical R-linear embedding

ι :
⊕
i

Di(Fodd)⊗
r−i∧

(Feven) ↪→ T r(F )

whose image is precisely
∧r F . Here, Di(Fodd) := Symi((Fodd)∗)∗, the ith divided power of

Fodd. We now describe this embedding in detail.
Let ε : T (F )→ T (F ) denote the anti-symmetrization map

(x1 ⊗ · · · ⊗ xi) 7→
∑
σ∈Σi

(−1)sign(σ)σ · (x1 ⊗ · · · ⊗ xi).

The composition T (Feven) ↪→ T (F )
ε−→ T (F ) factors through

∧
Feven, inducing an embedding

ιΛ :
∧

Feven ↪→ T (F ).

By [Rob63] Proposition IV.5, there is an embedding of R-algebras

ιD : D(Fodd)→ T (Fodd)

such that ιD(x(j)) = x⊗ · · · ⊗ x︸ ︷︷ ︸
j copies

for all x ∈ Fodd, where the target is equipped with the

shuffle product. The embedding ι is defined on each summand Di(Fodd)⊗
∧r−i Feven by∑

σ∈Σi,r−i

(−1)sign(σ)σ · (ιD ⊗ ιΛ),

where Σi,r−i ⊆ Σr denotes the set of (i, r − i) shuffles.

Example 2.2. Let x, y ∈ R, and take F to be the Koszul complex

R

(
x y

)
←−−−−− R⊕2

−y
x


←−−−− R

on x and y, lying in homological degrees 0, 1, and 2. Then
∧2(F ) is the complex

R⊕2

y x 0 x
0 y x −y


←−−−−−−−−−−−− R⊕4


2x 0
−y x
0 −2y
−y −x


←−−−−−−−−− R⊕2,

lying in homological degrees 1, 2, and 3.
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The complex
∧
F :=

⊕
r≥0

∧r F is equipped with a product

µ :

r1∧
F ⊗

r2∧
F →

r1+r2∧
F

and a coproduct

∆:
r∧
F →

⊕
r1+r2=r

r1∧
F ⊗

r2∧
F.

For explicit formulas for µ and ∆, we refer the reader to the proof of [Wey03, Proposition
2.4.1].

2.2. Schur complexes. Let r be a positive integer, and let λ = (λ1, . . . , λs) be a partition
of r, where λi ≥ λi+1. We will encode partitions with Young diagrams. For example, the
partition (3, 2, 2) of 7 corresponds to the diagram

.

Let c1, . . . , ct denote the lengths of the columns of λ.

Definition 2.3. The Schur complex Sλ(F ) is the quotient (
∧c1 F ⊗ · · · ⊗

∧ct F )/R, where
R is the sum of submodules

c1∧
F ⊗ · · · ⊗

ca−1∧
F ⊗Ra,a+1 ⊗

ca+2∧
F ⊗ · · · ⊗

ct∧
F.

Here, Ra,a+1 is the submodule spanned by the images of the compositions

Θ(a, u, v;F ) :
u∧
F ⊗

ca−u+ca+1−v∧
F ⊗

v∧
F

1⊗∆⊗1−−−−→
u∧
F ⊗

ca−u∧
F ⊗

ca+1−v∧
F ⊗

v∧
F

µ⊗µ−−→
ca∧
F ⊗

ca+1∧
F

for u+ v < ca+1.

Remark 2.4. Our definition of the Schur complex differs from the one in [Wey03, Section
2.4]: Weyman’s definition of the Schur complex of F with respect to λ is equal to Sλ∗(F ),
where λ∗ is the conjugate of λ, i.e. the result of transposing the rows and columns of λ.

Example 2.5. Of course, if λ = (1, . . . , 1), Sλ(F ) =
∧r F . If λ = (r), Sλ(F ) = Symr(F )

(see [Wey03, Section 2.4] for the definition of the symmetric power of a complex).

The basis of F chosen above determines a basis for each
∧ci F : namely, the images under

ι of elements of the form

{e(j1)
1 · · · e(jl)

m ⊗ fk1 ∧ · · · ∧ fkci−(j1+···+jl)
}

(from now on, we will tacitly identity these basis elements with their images under ι). These
bases combine to form an R-linear spanning set S for Sλ(F ). We will write elements of S as
Z/2-graded Young tableaux of shape λ, i.e. functions

T : {1, . . . , r} → {−m, . . . ,−1} ∪ {1, . . . , n},
where, as above, m = rank(Fodd) and n = rank(Feven). Here, divided power factors corre-
spond to negative values, and exterior factors correspond to positive values. For instance,
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if λ = (3, 3, 1) and m = 2 = n, the element (e
(2)
2 ⊗ f1) ⊗ (e1 ⊗ f1) ⊗ (f1 ∧ f2) in S(3,3,1)(F )

corresponds to the function

l 1 2 3 4 5 6 7
T (l) -2 -2 1 -1 1 1 2

,

which we express as the Young tableau

T =
−2 −1 1

−2 1 2

1

.

We will call such a tableau standard if

(A) the columns increase from top to bottom, with equality possible only for negative
values, and

(B) the rows increase from left to right, with equality possible only for positive values.

Remark 2.6. Our definition of a standard tableau is the transpose of Weyman’s in [Wey03,
Definition 1.1.12(c)] (cf. Remark 2.4 above).

For instance, the tableau T above is standard. The tableaux

−2 −1 1

−2 −1 2

−3

,
−2 −1 1

1 1 2

1

,
−2 −1 −1

−2 1 2

1

are non-standard.

Proposition 2.7 ([Wey03, Proposition 2.4.2]). The standard Z/2-graded tableaux of shape
λ form an R-linear basis of Sλ(F ).

We compute the differentials in Sλ(F ) with respect to this basis in the SchurComplexes

package. It is therefore essential for us to implement an algorithm for writing the image of a
standard tableau under the differential in Sλ(F ) as a linear combination of standard tableaux.
The proof of [Wey03, Proposition 2.4.2] explains such an algorithm: the “straightening
algorithm” of [ABW82]. We now discuss this algorithm in detail.

2.3. The straightening algorithm. As in the previous subsection, λ = (λ1, . . . , λs) de-
notes a partition of a positive integer r with column lengths c1, . . . , ct. The straightening
algorithm is a process for writing a Z/2-graded tableau in the spanning set S of Sλ(F )
described above as a Z-linear combination of standard tableaux. Here is how it works.

Let T be a tableau in S. We make the following observations:

• If a column of T contains a repeated positive entry, T = 0 in Sλ(F ).
• Since the divided power (resp. exterior) algebra is commutative (resp. skew commu-

tative), rearranging the columns in T so that it satisfies (A) only changes the element
of Sλ(F ) represented by T up to a sign.

With these facts in mind, we recall the straightening algorithm:
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• Input: A tableau T ∈ S.

• Step 1: Denote by T ′ the result of rearranging the columns of T so that they satisfy
(A), and let σ ∈ {±1} denote the resulting sign.

• Step 2: If T ′ satisfies (B), output σT ′. Otherwise, choose the topmost row, say
the wth row, with a “violation” of (B). Let T ′(i, j) denote the entry with horizontal
coordinate i and vertical coordinate j in the Young diagram, counting from the top-
left corner. So T ′(i, j) is the entry in the ith column and the jth row. Choose the
smallest index a such that either T ′(a, w) > T ′(a+1, w) or T ′(a, w) = T ′(a+1, w) < 0.
Then, choose the smallest index w′ such that T ′(a + 1, w) < T ′(a + 1, w′ + 1); if no
such index exists, set w′ = ca+1.

• Step 3: Set u := w − 1 and v := ca+1 − w′. Define
(1) V1 ∈

∧u F to be the element corresponding to the first u entries in the ath

column of T ′,
(2) V2 ∈

∧ca−u+ca+1−v F to be the element corresponding to the last ca − u entries
in the ath column of T ′ followed by the first ca+1− v = w′ entries of the (a+ 1)st

column of T ′,
(3) V3 ∈

∧v F to be the element corresponding to the last v entries in the (a+ 1)st

column of T ′.
For k ∈ {1, . . . , a − 1, a + 2, . . . , s}, define Uk to be the element of

∧ck F which
corresponds to the kth column of T ′. Recall that

L := (1⊗Θ(a, u, v;F )⊗ 1)(U1 ⊗ · · · ⊗ Ua−1 ⊗ V1 ⊗ V2 ⊗ V3 ⊗ Ua+2 ⊗ · · · ⊗ Us)
is 0 in Sλ(F ), where Θ(a, u, v;F ) is as in Definition 2.3. L is a Z-linear combination
of tableaux in S which contains T ′ with coefficient 1. If each tableau in the sum T ′−L
is standard, output σ(T ′ − L). Otherwise, repeat this algorithm on each tableaux in
σ(T ′ − L), keeping track of the coefficients.

The key observation is that each tableau appearing in the linear combination T ′−L from
Step 3 is strictly “smaller” than T ′, in the sense described in [Wey03, Section 1.1], and so
the algorithm does indeed terminate.

Example 2.8. Let’s apply the straightening algorithm to the tableau

T =
−3 2 −1

−2 1 3

−2 3

.

• Step 1: The middle column needs to be rearranged. Since f2f1f3 = −f1f2f3 in∧3 Fodd, we have

T ′ =
−3 1 −1

−2 2 3

−2 3

and σ = −1.
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• Step 2: T ′ is not standard. Here, w = 1, a = 2, and w′ = 1.

• Step 3: Here, u = 0 and v = 1. We have U1 = e3e
(2)
2 , V2 = e1 ⊗ f1 ∧ f2 ∧ f3, and

V3 = f3 (since u = 0, V1 plays no role), so

L = (1⊗Θ(2, 0, 1;F ))(e3e
(2)
2 ⊗ (e1 ⊗ f1 ∧ f2 ∧ f3)⊗ f3).

In this case, Θ(2, 0, 1) is the composition

(
4∧
F )⊗ F ∆⊗1−−→ (

3∧
F ⊗ F )⊗ F id⊗µ−−−→

3∧
F ⊗

2∧
F.

By the proof of [Wey03, Proposition 2.4.1(a)], the relevant component of the coprod-
uct

∆:
4∧
F →

3∧
F ⊗ F

in Θ(2, 0, 1;F ) is:

D1(Fodd)⊗
3∧
Feven

∆D⊗∆Λ−−−−−→
1⊕
i=0

Di(Fodd)⊗D1−i(Fodd)⊗
3−i∧

Feven ⊗
i∧
Feven

τ−→
1⊕
i=0

Di(Fodd)⊗
3−i∧

Feven ⊗D1−i(Fodd)⊗
i∧
Feven,

where ∆D and ∆Λ are the coproducts on the ordinary divided power and exterior
algebra, and τ transposes the middle factors and multiplies by the sign (−1)(1−i)(3−i).

Note: one might think that, since the elements of
∧3−i Feven have even degree,

transposing the middle two factors should not introduce a sign. But recall that we
are considering D1−i(Fodd)⊗

∧3−i Feven as a submodule of T 4(F ) via the embedding

ι, which shuffles together the elements of D1−i(Fodd) and
∧3−i Feven: this is why

it is necessary to multiply by (−1)(1−i)(3−i). The general rule here is: when one
transposes the factors of Ds(Fodd) ⊗

∧t Feven, one must introduce the sign (−1)st =
sign((1 2 · · · s+ t)t).

Applying the formula for ∆Λ in [Wey03, Section 1.1], one gets

L = −(e3e
(2)
2 )⊗ (f1 ∧ f2 ∧ f3)⊗ (e1 ⊗ f3)− (e3e

(2)
2 )⊗ (e1 ⊗ f1 ∧ f3)⊗ (f2 ∧ f3)

+ (e3e
(2)
2 )⊗ (e1 ⊗ f2 ∧ f3)⊗ (f1 ∧ f3),

and therefore

T =
−3 −1 2

−2 1 3

−2 3

−
−3 −1 1

−2 2 3

−2 3

.

Both of these tableaux are standard, so we’re done.
6



3. Examples of computations using the SchurComplexes package

The SchurComplexes package has two main functions:

• straightenTableau, which applies the straightening algorithm to a tableau, and
• schurComplex, which computes the Schur complex of a bounded complex of finitely

generated free modules.

3.1. Using the straightenTableau function. Let’s apply straightenTableau to the
tableau in Example 2.8. First, we load the package:

i1 : loadPackage "SchurComplexes.m2"

We encode the tableau T in a HashTable:

i2 : T = new HashTable from {(1,1) => -3, (1,2) => -2, (1,3) => -2,

(2,1) => 2, (2,2) => 1, (2,3) => 3, (3,1) => -1, (3,2) => 3}

We encode the partition (3, 3, 2) in a List:

i3 : lambda = {3,3,2}

Now, we apply straightenTableau to the pair (T, lambda):

i4 : straightenTableau(T, lambda)

o4 = HashTable{HashTable{(1, 1) => -3} => 1 }

(1, 2) => -2

(1, 3) => -2

(2, 1) => -1

(2, 2) => 1

(2, 3) => 3

(3, 1) => 2

(3, 2) => 3

HashTable{(1, 1) => -3} => -1

(1, 2) => -2

(1, 3) => -2

(2, 1) => -1

(2, 2) => 2

(2, 3) => 3

(3, 1) => 1

(3, 2) => 3

The output is a HashTable which assigns a coefficient to each standard tableau in the
linear combination comprising the straightening of T . Notice that the output agrees with
the calculation in Example 2.8.

3.2. Using the schurComplex function. Let R = Q[xi,j], where 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4,
and let

F : R⊕4 (xi,j)−−−→ R⊕2
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denote the generic 2 × 4 matrix, considered as a complex concentrated in degrees 1 and 0.
By [Wey03, Exercise 6.34(d)], S(3)(F ) = Sym3(F ) has nonzero homology only in degree 0.
We now use the schurComplex method to compute S(3)(F ) and verify this fact.

We first load the package, fix our ground ring R, and define our complex F :

i1 : loadPackage "SchurComplexes.m2"

i2 : R = QQ[x11,x21,x12,x22,x13,x23,x14,x24];

i3 : M = genericMatrix(R,x11,2,4);

i4 : F = new ChainComplex;

i5 : F.ring = R; F#0 = target M; F#1 = source M; F.dd#1 = M;

The method schurComplex takes as input a ChainComplex and a List which encodes the
partition. Let’s define our partition and compute S(3)(F ):

i6 : lambda = {3};

i7 : S = schurComplex(lambda,F)

4 12 12 4

o7 = R <-- R <-- R <-- R

0 1 2 3

Finally, let’s check that S(3)(F ) has trivial homology in degrees greater than 0:

i8 : apply((length S)+1,i->reduceHilbert hilbertSeries HH_i(S))

4 0 0 0

o8 = {--------, -, -, -}

5 1 1 1

(1 - T)
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